Texas Instruments bqTESLA bq500414Q User Manual Download Page 12

Test Setup

www.ti.com

6

Test Setup

6.1

Equipment

6.1.1

bqTESLA™ Receiver

Use the bq51013BEVM-764 or a Qi-compliant receiver to work with this EVM.

6.1.2

Voltage Source

The input voltage source must provide a regulated DC voltage of 12 V and deliver at least 1-A continuous
load current; current limit must be set to 2 A.

CAUTION

To help assure safety and integrity of the system and minimize risk of electrical
shock hazard, always use a power supply providing suitable isolation and
supplemental insulation (double insulated). Compliance to IEC 61010-1, Safety
Requirements

for

Electrical

Equipment

for

Measurement,

Control

and

Laboratory Use, Part 1, General Requirements, or its equivalent is strongly
suggested, including any required regional regulatory compliance certification
approvals. Always select a power source that is suitably rated for use with this
EVM as referenced in this user manual.

External Power Supply Requirements:
Nom Voltage: 12.0 VDC
Max Current: 2.0 A
Efficiency Level V

External Power Supply Regulatory Compliance Certifications: Recommend
selection and use of an external a power supply which meets TI’s required
minimum electrical ratings in addition to complying with applicable regional
product regulatory and safety certification requirements such as (by example)
UL, CSA, VDE, CCC, PSE, and so forth.

6.1.3

Meters

Monitor the output voltage at the bq51013BEVM-764 test point TP7 with a voltmeter. Monitor the input
current into the load with an appropriate ammeter. The transmitter input current and voltage can be
monitored, but the meter must use the averaging function for reducing error, due to communications
packets.

6.1.4

Loads

A single load is required at 5 V with a maximum current of 1 A. The load can be resistive or electronic.

6.1.5

Oscilloscope

Use a dual-channel oscilloscope with appropriate probes to observe the COMM_DRV signal at
bq51013BEVM-764 TP3 and other signals.

6.1.6

Recommended Wire Gauge

For proper operation, use 22-AWG wire when connecting the EVM to the input supply and the
bq51013BEVM-764 to the load.

12

bq500414Q bqTESLA Wireless Power TX EVM

SLVUA40A – March 2014 – Revised January 2015

Submit Documentation Feedback

Copyright © 2014–2015, Texas Instruments Incorporated

Summary of Contents for bqTESLA bq500414Q

Page 1: ...escriptions 3 4 1 Connector and Test Point Descriptions 3 4 2 Test Point Descriptions 3 5 Schematic and Bill of Materials 6 6 Test Setup 12 6 1 Equipment 12 6 2 Equipment Setup 13 7 bq500414QEVM 629 A...

Page 2: ...Max Unit Input Characteristics VIN Input voltage bq500414Q 6 12 16 V IIN Input current VIN 12 V RX IOUT 1 A at 5 V 570 mA Input no load current VIN 12 V IOUT 0 A 72 mA Input stand by current VIN 12 V...

Page 3: ...MOD and FOD Enable Disable Shorting Jumper installed Enable removed Disable 4 1 4 2 JP2 LED select bypass Shorting Jumper installed LED Bin 0 Default is not installed 4 2 Test Point Descriptions The t...

Page 4: ...Feedback circuit for 12V regulator 4 2 13 TP13 GND Ground test point connection 4 2 14 TP14 I_SENSE Current as measured in the system 12V supply 4 2 15 TP15 COMM Sample of coil voltage return for com...

Page 5: ...or 4 2 27 TP27 PWRGD Power good signal from the 3 3Vdc regulator 4 2 28 TP28 TANK3 Coil 3 Resonant Tank Drive Signal 4 2 29 TP29 PHSE3 Coil 3 Drive signal 4 2 30 TP30 GND Ground test point connection...

Page 6: ...ND 1 F C7 1 00k R62 TP26 EN_PWR AGND 100k R51 270pF C12 0 22 F C13 1 00k R26 270pF C9 I_SENSE GND TP14 0 1 F C57 GND GND GND GND 0 025 R30 TP9 GND GND 2700pF C17 AGND 49 9 R50 150pF C36 TP12 5 10k R12...

Page 7: ...DMG4800LSD Q3B GND GND GND TP30 3V3_VCC GND COMM COMM 10 0 R34 200k R19 BAT54SW D6 3V3_VCC 23 2k R21 0 1 F C32 33pF C28 10 0 R16 COIL1 2 SN74LVC1G3157 Q1 B2 1 GND 2 B1 3 A 4 VCC 5 S 6 U5 TP4 10 0k R2...

Page 8: ...D 30 RESERVED 31 GND 32 V33D 33 V33A 34 BPCAP 35 GND 36 COMM_A 37 COMM_A 38 COMM_B 39 COMM_B 40 RESERVED 41 I_SENSE 42 LOSS_THR 43 LED_MODE 44 V_SENSE 45 Unused 46 GND 47 ADCREF 48 EPAD 49 U10 TRST AG...

Page 9: ...5 C0G NP0 0603 0603 GRM1885C1H151JA01D MuRata C41 1 4 7uF CAP CERM 4 7uF 25V 10 X5R 0805 0805 GRM21BR61E475KA12L MuRata C44 C50 C58 3 22uF CAP CERM 22uF 25V 10 X5R 1210 1210 GRM32ER61E226KE15L MuRata...

Page 10: ...0 025 ohm 1 0 5W 1206 1206 CSR1206FK25L0 Stackpole Electronics Inc R31 1 2 00k RES 2 00k ohm 1 0 1W 0603 0603 CRCW06032K00FKEA Vishay Dale R33 1 15 4k RES 15 4k ohm 1 0 1W 0603 0603 CRCW060315K4FKEA...

Page 11: ...0603 0603 C0603X472K5RACTU Kemet J3 0 NoPop Header 2x7 pin 100mil spacing Straight 4 Wall 0 338 x 0 988 inch 2514 6002UB 3M R1 0 2 00k RES 2 00k ohm 1 0 1W 0603 0603 CRCW06032K00FKEA Vishay Dale R4 0...

Page 12: ...ply Regulatory Compliance Certifications Recommend selection and use of an external a power supply which meets TI s required minimum electrical ratings in addition to complying with applicable regiona...

Page 13: ...the load at TP7 All voltmeters must be Kelvin connected at the pin to the point of interest 6 2 1 Equipment Setup Diagram The diagram in Figure 4 shows the test setup Figure 4 Equipment Setup 6 2 2 EV...

Page 14: ...put voltage of 13 6 V was used Figure 5 Efficiency versus Power bq500414QEVM 629 Transmitter and HPA764 Receiver 6 2 2 4 Efficiency Efficiency is affected by changes in the power section Higher RDSON...

Page 15: ...culates losses The RX sends this information to the driver TX in a digital word message packet Unaccounted for power loss is presumed to be a foreign object on the charging pad Should this lost power...

Page 16: ...to provide a good low noise ground plane for all circuits A 2 layer PCB presents a high risk of poor performance Grounding between the bq500414Q GND EPAD pin 47 36 and 32 and filter capacitor returns...

Page 17: ...VM 629 Assembly Drawings and Layout Figure 7 Top Overlay 17 SLVUA40A March 2014 Revised January 2015 bq500414Q bqTESLA Wireless Power TX EVM Submit Documentation Feedback Copyright 2014 2015 Texas Ins...

Page 18: ...mbly Drawings and Layout www ti com Figure 8 Top Solder 18 bq500414Q bqTESLA Wireless Power TX EVM SLVUA40A March 2014 Revised January 2015 Submit Documentation Feedback Copyright 2014 2015 Texas Inst...

Page 19: ...EVM 629 Assembly Drawings and Layout Figure 9 Top Layer 19 SLVUA40A March 2014 Revised January 2015 bq500414Q bqTESLA Wireless Power TX EVM Submit Documentation Feedback Copyright 2014 2015 Texas Inst...

Page 20: ...ly Drawings and Layout www ti com Figure 10 Inner Layer 1 20 bq500414Q bqTESLA Wireless Power TX EVM SLVUA40A March 2014 Revised January 2015 Submit Documentation Feedback Copyright 2014 2015 Texas In...

Page 21: ...629 Assembly Drawings and Layout Figure 11 Inner Layer 2 21 SLVUA40A March 2014 Revised January 2015 bq500414Q bqTESLA Wireless Power TX EVM Submit Documentation Feedback Copyright 2014 2015 Texas In...

Page 22: ...low power wireless power evaluation kit from Texas Instruments visit the product folder on the TI Web site at http www ti com product bq500414Q 22 bq500414Q bqTESLA Wireless Power TX EVM SLVUA40A Mar...

Page 23: ...AX 16 2 Deleted the Input current value of MAX 1000 mA from Table 1 2 Changed Figure 1 and added Figure 2 and Figure 3 6 Changed R3 R22 R52 in the Table 2 8 NOTE Page numbers for previous revisions ma...

Page 24: ...ause harmful interference to radio communications However there is no guarantee that interference will not occur in a particular installation If this equipment does cause harmful interference to radio...

Page 25: ...ing the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty If TI elects to repair or replace such EVM TI shall have a reasonable time to repa...

Page 26: ...essful communication This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna imped...

Page 27: ...ified allowable ranges some circuit components may have elevated case temperatures These components include but are not limited to linear regulators switching transistors pass transistors current sens...

Page 28: ...REMOVAL OR REINSTALLATION ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES RETESTING OUTSIDE COMPUTER TIME LABOR COSTS LOSS OF GOODWILL LOSS OF PROFITS LOSS OF SAVINGS LOSS OF USE L...

Page 29: ...sponsible for compliance with all legal regulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related inf...

Reviews: