background image

www.ti.com

4.3

Test Procedure

Test Summary

1. Verify that the equipment is set up according to Equipment Setup,

Section 4.2

.

2. Set jumpers on the UUT as follows: JMP1 to 0.5; JMP2 to HI; JMP3 to EN; install jumpers on JMP4

through JMP6.

3. Adjust R_DPPM until TP1 is 36.5 k

±0.1 k

with respect to GND, and adjust R_TMR until TP2 is

50 k

with respect to GND.

4. Verify that V

OUT

is approximately equal to V

BAT

(if V

OUT

< 1.1 V, the output is in short-circuit mode. To

get out of this mode, momentarily disconnect the 10-

load).

5. Power up the 5.25-VDC supply to the UUT.
6. Verify V

BAT

is between 2.4 VDC and 3 VDC, and the charger is in pre-charge state: LEDs STAT1 (D2),

STAT2 (D3), and ACPG (D1) are on.
If V

BAT

is above the low-voltage threshold (V

(LOWV)

~3 V), then the IC is in fast-charge mode [STAT2

(D3) is off (High)]. If the IC is in fast charge, skip to step 10.

7. Verify I

BAT

is ~0.1 A (I

BAT

~ = I

IN

– (V

OUT

/ R

OUT

) – 0.01 A)

8. Verify V

OUT

is between 4.3 VDC and 4.5 VDC.

9. Verify V

LDO

(TP4) is between 3.2 VDC and 3.4 VDC.

10. Allow the battery to charge until V

BAT

is between 3.2 VDC and 4.0 VDC. The charger should deliver

the programmed constant current to the battery unless the input cannot source the required current.

11. Verify D3 (STAT2) has turned off.
12. Verify I

BAT

is ~1.0 A [for a 10-k

resistor on ISET1, I

BAT

~ = I

IN

– (V

OUT

/ R

OUT

) – 0.01 A].

13. Apply a short between J3-4 (CE) and J3-3 (GND) on the UUT. This overrides the JMP3 100-k

pullup,

disables the charging, puts the IC in low-power mode, and connects the battery to the OUT pin. Note
that if CE is floated (JMP3 is removed and J3-3 to 4 connection is removed), the IC may bounce
between the charging and disabled states. Verify on the scope that V

OUT

does not drop out when

switching between the input source and the battery source.

14. Verify D2 (STAT1) has turned off.
15. Verify I

IN

drops below 10 mA [should be < 200 µA into the IC if PG LED (current) JMP6 is removed].

16. Verify V

OUT

is within –50 mV of V

BAT

.

17. Remove short betwen J3-4 and J3-3 on UUT. Verify on the scope that V

OUT

does not drop out. Verify

D2 (STAT1) has turned on, charging has resumed, and V

OUT

is powered from the input.

18. Disconnect the 5.25-VDC input supply from the UUT IN input. Verify on the scope that V

OUT

does not

drop out. Verify V

OUT

is within –50 mV of V

BAT

and D2 (STAT1) and D1 (PG) LEDs turn off. This

demonstrates battery power backup for loss of adapter power.

19. Reapply the +5.25-VDC supply to the UUT IN input. Verify on the scope that V

OUT

does not drop out.

Verify D2 (STAT1) and D1 (PG) LEDs turn on.

20. Reduce the current limit on the input supply to ~ 1 A (going to the IN pin on the UUT) and verify on the

scope that V

OUT

has dropped to the VDPPM level of ~4.2 V [(3.65 V at TP1) × 1.15 = 4.2 V]. Note that

the current into the battery is ~ 580 mA (1-A input minus 420 mA to the system), which has been
reduced to keep the output from falling below the programmed DPPM OUTPUT threshold of 4.2 V.
This demonstrates DPPM operation (charging current to the battery is reduced if output drops to the
DPPM OUTPUT voltage threshold attempting to keep the output voltage from dropping further).

21. Further reduce the input current limit to 250 mA. Verify on the scope that V

OUT

does not drop out.

Verify that V

OUT

drops just below V

BAT

(< 50 mV). Because the available input current is less than the

system OUT load, reducing the battery charging current to zero is still not enough reduction in load to
keep the output from dropping. Once the output drops below ~ 50 mV, the internal battery FET turns
on and allows the battery to source the OUT pin system load. This demonstrates battery supplement
mode.

22. Return the current limit of the 5.25-V supply to ~2 A. Verify V

OUT

returns to ~4.4 V.

23. Set JMP2 (MODE) to LO (USB mode). Verify that the input current, I

IN

, drops to between 400 mA and

500 mA. The programmed charge current of ~1 A and the system load of 10

exceeds the USB-mode

0.5-A limit; therefore, V

OUT

drops until the DPPM OUTPUT voltage threshold, or battery voltage, is

reached (whichever is higher). If the DPPM OUTPUT threshold is higher, the charging current is
reduced to keep the output voltage from dropping further. If the battery voltage is higher, the battery
supplements the current to keep the output from dropping too much (20 mV to 200 mV) below the
battery voltage.

4

bq24070 1.5-A Single-Chip Li-Ion and Li-Pol Charge Management IC EVM

SLUU248 – May 2006

Submit Documentation Feedback

Summary of Contents for bq24070

Page 1: ...er supply The charger is programmed from the factory to deliver 1 A of charging current Contents 1 Introduction 2 2 Considerations When Testing and Using bq24070 ICs 2 3 Performance Specification Summ...

Page 2: ...sconnected but the internal battery FET connects the battery to VOUT There are two types of OUT pin short circuit one associated with the input IN pin VOUT 1 V and the other associated with the BAT pi...

Page 3: ...1 W VBAT IBAT VIN VLDO ILDO 1 The HPA180 bq24070 thermal design is optimized 8 vias 0 031 inch PWB 2 oz copper to give JA 27 C W This section covers the setup and tests performed in evaluating the EVM...

Page 4: ...om the input 18 Disconnect the 5 25 VDC input supply from the UUT IN input Verify on the scope that VOUT does not drop out Verify VOUT is within 50 mV of VBAT and D2 STAT1 and D1 PG LEDs turn off This...

Page 5: ...at the charging terminates when the battery current tapers to C 10 or 100 mA 1 A 10 programmed charge current divided by 10 Verify D2 STAT1 turns off High and D3 STAT2 turns on Low 28 If a load is app...

Page 6: ...www ti com 5 Schematic S0200 01 Schematic Figure 2 bq24070 EVM Schematic bq24070 1 5 A Single Chip Li Ion and Li Pol Charge Management IC EVM 6 SLUU248 May 2006 Submit Documentation Feedback...

Page 7: ...op assembly view of the EVM Figure 5 shows the top etch layer of the EVM Figure 6 shows the board second etch layer of the EVM Figure 7 shows the board third etch layer of the EVM Figure 8 shows the b...

Page 8: ...30 1 79 K003 2 30 1 79 Physical Layouts Figure 4 Top Silkscreen Figure 5 Board Layout Top Etch Layer 8 bq24070 1 5 A Single Chip Li Ion and Li Pol Charge Management IC EVM SLUU248 May 2006 Submit Docu...

Page 9: ...005 2 30 1 79 Physical Layouts Figure 6 Board Layout Second Etch Layer Figure 7 Board Layout Third Etch Layer SLUU248 May 2006 bq24070 1 5 A Single Chip Li Ion and Li Pol Charge Management IC EVM 9 Su...

Page 10: ...ww ti com K006 2 30 1 79 Physical Layouts Figure 8 Board Layout Bottom Etch Layer bq24070 1 5 A Single Chip Li Ion and Li Pol Charge Management IC EVM 10 SLUU248 May 2006 Submit Documentation Feedback...

Page 11: ...6 1 1 k Resistor chip 1 k 1 10W 1 0805 Std Std R7 0 1 k Resistor chip 1 k 1 10W 1 0805 Std Std R9 1 10 k Resistor chip 10 k 1 16W 1 0603 Std Std R10 1 0 Resistor chip 0 1 16 W 1 0603 Std Std R11 1 22...

Page 12: ...y restricted substances RoHS recycling WEEE FCC CE or UL and therefore may not meet the technical requirements of these directives or other related directives Should this evaluation board kit not meet...

Page 13: ...nd the output voltage range of 0 V to 6 5 V Exceeding the specified input range may cause unexpected operation and or irreversible damage to the EVM If there are questions concerning the input range p...

Page 14: ...iness practice TI is not responsible or liable for any such statements TI products are not authorized for use in safety critical applications such as life support where a failure of the TI product wou...

Reviews: