background image

www.ti.com

Test Summary

17. Verify V

OUT

is within –50 mV of V

BAT

.

18. Remove short betwen J3-4 and J3-3 on UUT. Verify on the scope that V

OUT

does not drop out. Verify

D2 (STAT1) has turned on, charging has resumed and V

OUT

is powered from the input.

19. Disconnect the +5.25-VDC Input Supply from the UUT AC input. Verify on the scope that V

OUT

does

not drop out. Verify V

OUT

is within –50 mV of V

BAT

and D2 (STAT1) and D5 (ACPG) LEDs turn off. This

demonstrates battery power backup for loss of AC adapter.

20. Reapply the +5.25-VDC supply to the UUT AC input. Verify on the scope that V

OUT

does not drop out.

Verify D2 (STAT1) and D5 (ACPG) LEDs turn on.

21. Adjust R15 until the voltage on TP1 is ~ 3.50 VDC (V

BAT

should be less than 3.9 V for this

demonstration; otherwise, discharge battery).

22. Reduce the current limit on the input supply to ~ 1 A (going to AC pin on UUT) and verify on the scope

that V

OUT

has dropped to the VDPPM level of ~4.0 V {(3.5 V at TP1) × 1.15 = 4 V}. Note that the

current into the battery is ~ 600 mA (1-A input minus 400 mA to the system), which has been reduced
to keep the output from falling below the programmed DPPM OUTPUT threshold of 4 V. This
demonstrates DPPM operation (charging current to the battery is reduced if output drops to the DPPM
OUTPUT voltage threshold attempting to keep the output voltage from dropping further).

23. Further reduce the input’s current limit to 250 mA. Verify on the scope that V

OUT

does not drop out.

Verify that V

OUT

drops just below V

BAT

(< 50 mV). Because the available input current is less than the

system OUT load, reducing the battery charging current to zero is still not enough reduction in load to
keep the output from dropping. Once the output drops below ~ 50 mV, the internal battery FET turns
on and allows the battery to source the OUT pin system load. This demonstrates battery supplement
mode.

24. Return the current limit of the +5.25-V supply to ~2 A. Verify V

OUT

returns to Vreg or Vin (see Step 8 of

this test procedure).

25. Set JMP2 (PSEL) to USB (PSEL = low). Verify that the input current (AC) drops to between 400 mA

and 500 mA. The programmed charge current of ~1 A and the system load of 10

exceeds the USB

0.5-A limit; therefore,V

OUT

drops until the DPPM OUTPUT voltage threshold, or battery voltage, is

reached (which ever is higher). If the DPPM OUTPUT threshold is larger, the charging current is
reduced to keep the output voltage from dropping further. If the battery voltage is higher, the battery
supplements the current to keep the output from dropping too much (50 mV to 200 mV) below the
battery voltage. Note that setting PSEL to low (USB mode; PSEL high is AC mode) selects the USB
input as the primary source. If the USB source is not present, and the ac source is present, the IC
uses the AC input source as if it were a USB input. This feature is useful if only one input power
connector is desired, and two sources (USB and AC adaptor) are available. A keyed cable or a
u-controller would set the PSEL pin for the available source. Note that the system would ideally go to a
lower power mode prior to selecting USB operation to avoid pulling down V

OUT

.

26. Plug in a USB cable from a high-power port (500 mA) into the UUT (or supply 5 VDC to J1). Verify that

the USB input now supplies the input current instead of the AC (J2) input. This demonstrates that
JMP2 (PSEL) defines the priority of the inputs. If PSEL = Low (USB priority), then the USB input is
used first, if available, and if not it switches to AC power at USB-current levels.

27. Verify that D4 (USBPG) turns on.
28. Set JMP2 (PSEL) to AC, and verify that the AC supply is providing ~1.5 A of current (~0.44 to the load

and 1 A to the battery plus miscellaneous).

29. Remove the ac-input supply and verify that the USB source is supplying between 400 mA and 500 mA

of current to the input. The output should have dropped to the DPPM OUTPUT threshold or battery
voltage (whichever is higher).

30. Verify that D5 (ACPG) turns off.
31. Reapply the AC-input source and verify that the AC source is now providing the ~1.5 A as before.
32. Verify that D5 (ACPG) turns on.
33. Set JMP2 (PSEL) to USB, and verify that the USB source is now providing between 400 mA and 500

mA of current.

34. Set JMP1 to 0.1 on the UUT. Verify that the input current has dropped below 100 mA and V

OUT

has

dropped slightly below V

BAT

. In this test, the system load is 10

, which would result in the output

dropping to 1 V at 100 mA if there were no other source to help out. As the output voltage drops to the
DPPM OUTPUT threshold, the charging current is reduced to zero, but V

OUT

continues to drop until it

reaches the battery voltage. The internal battery FET turns on to supplement the OUTPUT. This

SLUU207A – October 2004 – Revised January 2007

bq2403x (bqTiny-III™) 1.5-A Single-Chip Li-Ion

5

and Li-Pol Charge Management IC EVM

Submit Documentation Feedback

Summary of Contents for bq2403 Series

Page 1: ...dc power supply The charger is programmed from the factory to deliver 1 A of charging current Contents 1 Introduction 2 2 Considerations When Testing and Using bq2403x ICs 2 3 Performance Specification Summary 3 4 Test Summary 3 5 Schematic 7 6 Physical Layouts 8 7 Bill of Materials 13 8 References 14 List of Figures 1 Test Diagram 4 2 bq2403x EVM Schematic 7 3 Top Assembly View 8 4 Board Layout T...

Page 2: ...ulator connected to the OUT pin The bq24035 shuts down if the input exceeds 6 4 VDC The three potential sources to power the system VOUT are AC AC to DC adapter USB port and battery The IC is designed to power the system continuously The battery in most cases is the last line of backup If the AC or USB inputs are not available or disabled the battery connects to the system In thermal regulation co...

Page 3: ...ecifications of the EVM Table 1 Performance Specification Summary For bq24030 1 2 5 EVMs SPECIFICATION TEST CONDITIONS MIN TYP MAX UNITS Input DC Voltage VI AC 4 8 V 5 0 6 5 Volts Input DC USB Voltage VI USB 5 0 Battery Charge Current IO CHG 1 0 2 0 Amperes Power Dissipation bq2403x IC 1 Cell Pdiss Vin Vout Iout Vin Vbat Ibat see 1 Watts Vin Vldo ILDO 1 The HPA073 bq2403x thermal design is optimiz...

Page 4: ...5 switches the input to the output for VAC less than 6 V The bq24030 1 regulates VOUT to 6 V for larger inputs and the bq24035 turns off the charging and output for an AC input above 6 VDC 9 Verify VLDO is between 3 2 VDC and 3 4 VDC 10 Allow the battery to charge until VBAT is between 3 2 VDC and 4 0 VDC The charger should deliver the programmed constant current to the battery unless the input ca...

Page 5: ...hold is larger the charging current is reduced to keep the output voltage from dropping further If the battery voltage is higher the battery supplements the current to keep the output from dropping too much 50 mV to 200 mV below the battery voltage Note that setting PSEL to low USB mode PSEL high is AC mode selects the USB input as the primary source If the USB source is not present and the ac sou...

Page 6: ...es regulation 4 20 VDC for bq24030 2 5 and 4 1 VDC for bq24031 the charging current tapers off 39 Verify that the charging terminates when the battery current tapers to C 10 or 100 mA 1 A 10 programmed charge current divided by 10 Verify D2 STAT1 turns off High and D3 STAT2 turns on Low 40 If a load is applied across the battery such that the battery is discharged to 100 mV below the regulation vo...

Page 7: ...om 5 Schematic Schematic Figure 2 bq2403x EVM Schematic SLUU207A October 2004 Revised January 2007 bq2403x bqTiny III 1 5 A Single Chip Li Ion 7 and Li Pol Charge Management IC EVM Submit Documentation Feedback ...

Page 8: ...VM Figure 4 shows the top etch layer of the EVM Figure 5 shows the board second etch layer of the EVM Figure 6 shows the board third etch layer of the EVM Figure 7 shows the bottom etch layer of the EVM Figure 3 Top Assembly View 8 bq2403x bqTiny III 1 5 A Single Chip Li Ion SLUU207A October 2004 Revised January 2007 and Li Pol Charge Management IC EVM Submit Documentation Feedback ...

Page 9: ...m Physical Layouts Figure 4 Board Layout Top Etch Layer SLUU207A October 2004 Revised January 2007 bq2403x bqTiny III 1 5 A Single Chip Li Ion 9 and Li Pol Charge Management IC EVM Submit Documentation Feedback ...

Page 10: ...Physical Layouts Figure 5 Board Layout Second Etch Layer 10 bq2403x bqTiny III 1 5 A Single Chip Li Ion SLUU207A October 2004 Revised January 2007 and Li Pol Charge Management IC EVM Submit Documentation Feedback ...

Page 11: ... Physical Layouts Figure 6 Board Layout Third Etch Layer SLUU207A October 2004 Revised January 2007 bq2403x bqTiny III 1 5 A Single Chip Li Ion 11 and Li Pol Charge Management IC EVM Submit Documentation Feedback ...

Page 12: ...Physical Layouts Figure 7 Board Layout Bottom Etch Layer 12 bq2403x bqTiny III 1 5 A Single Chip Li Ion SLUU207A October 2004 Revised January 2007 and Li Pol Charge Management IC EVM Submit Documentation Feedback ...

Page 13: ... 1 16 W 1 603 Std Std R8 1 1 1 1 R10 Resistor Chip 0 Ω 1 16 W 1 603 Std Std 1 1 1 1 R11 Resistor Chip 22 6 kΩ 1 16 W 1 603 Std Std 1 1 1 1 R14 Resistor Chip 30 1 kΩ 1 16 W 1 603 Std Std 1 1 1 1 R15 Potentiometer 20 kΩ 1 4 inch Cermet 0 25 0 17 Bourns 3266W 203 12 turn top adjust 1 1 1 1 R16 Potentiometer 50 kΩ 1 4 inch Cermet 0 25 0 17 Bourns 3266W 503 12 turn top adjust 3 3 3 3 R3 R4 R5 Resistor ...

Page 14: ...om 8 References References 1 SLUS618 bq2403x Datasheet 14 bq2403x bqTiny III 1 5 A Single Chip Li Ion SLUU207A October 2004 Revised January 2007 and Li Pol Charge Management IC EVM Submit Documentation Feedback ...

Page 15: ...r other related directives Should this evaluation board kit not meet the specifications indicated in the User s Guide the board kit may be returned within 30 days from the date of delivery for a full refund THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES EXPRESSED IMPLIED OR STATUTORY INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNE...

Page 16: ...EVM If there are questions concerning the input range please contact a TI field representative prior to connecting the input power Applying loads outside of the specified output range may result in unintended operation and or possible permanent damage to the EVM Please consult the EVM User s Guide prior to connecting any load to the EVM output If there is uncertainty as to the load specification p...

Page 17: ...o change without notice TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource Other reproduction and display of these resources is prohibited No license is granted to any other TI intellectual property right or to any third party intellectual property right TI disclaims responsibility for and you will fully indemn...

Reviews: