Tektronix TU-7 Instruction Manual Download Page 12

Circuit  Description— Type  TU-7

scope  vertical  amplifier.  When  using  the  LOW  LOAD  or 

HIGH  LOAD  positions,  an  external  signal  applied  to  the 

Type  TU-7  INPUT  connector  is  ac  coupled  through  C22  to 

pin  1  of  the  interconnecting  plug.  Since  the  signal  is  applied 
to  pin  1  only,  it  provides  single-ended  drive  to  the  vertical 
amplifier.  Front-panel  VARIABLE  control  R ll,  connected  be­
tween  the  junction  of  RIO/Cl0  and  ground,  controls  the 
amount  of  input  signal  applied  to  pin  1.  RIO  and  CIO  pro­

vide  some  input  signal  frequency  compensation.  Vertical 

positioning  of  the  trace  is  provided  by  the  voltage  applied 
to  pin  3  of  the  interconnecting  plug  through  the  vertical 

position  network.

An  internal  trigger  signal  is  applied  from  the  junction  of 

R12  and  R14  to  pin  5  of  the  interconnecting  plug.  For 

oscilloscopes  that  can  trigger  directly  from  the  plug-in  unit, 
this  signal  simulates  the  internal  trigger  signal  from  a  dual­
trace  piug-in  preamplifier,  such  as  the  Tektronix  Type  1A1.

In  all  positions  of  the  TEST  FUNCTION  switch  except 

COMMON  MODE,  -{-PULSE,  and  —PULSE,  two  separate 
voltage  dividers  set  the  dc  voltages  at  pins  1  and  3  of  the 

interconnecting  plug  at  +67.5  volts  with  the  trace  centered 

and  no  signal  applied.  This  voltage,  which  simulates  the 

nominal  output  voltage  of  a  plug-in  preamplifier,  is  essential 

at  the  input  of  the  oscilloscope  for  linear  operation  of  the 
vertical  amplifier.  The  voltage  at  pin  1  is  set  by  voltage 

divider  R16,  R17,  R18  and  R19.  The  voltage  at  pin  3  is  set 
by  voltage  divider  R84,  R85,  R86,  vertical  positioning  net­

work  R80A,  B,  C,  D,  R81,  and  VERTICAL  POSITION  control 

R82.  The  VERTICAL  POSITION  control  varies  the  divider 
voltage  applied  to  pin  3  of  the  interconnecting  plug  and 
thus  controls  the  vertical  position  of  the  display  in  all  posi­
tions  of  the  TEST  FUNCTION  switch  except  COMMON 
MODE.

in  the  GAIN  SET  position  of  the  TEST  FUNCTION  switch, 

a  precision  250-to-l  divider  consisting  of  R17  in  series  with 

parallel  resistors  R18  and  R19  sets  the  amount  of  input  cali­

brator  signal  applied  to  the  oscilloscope  vertical  amplifier. 

Thus,  if  a  100-volt  peak-to-peak  calibrator  signal  is  used, 
the  divider  dc  couples  a  0.4-volt  signal  to  pin  1  of  the  inter­

connecting  plug.  This  signal  results  in  a  4-cm  deflection 
on  the  crt  if  the  gain  of  the  oscilloscope  vertical  amplifier 

is  set  correctly.

In  the  COMMON  MODE  position  of  the  TEST  FUNC­

TION  switch,  a  signal  applied  to  the  INPUT  connector  is 

ac  coupled  through  C22  and  applied  equally  through  R25 
and  R26  to  pins  1  and  3  of  the  interconnecting  plug.  The 

TEST  FUNCTION  switch  disconnects  the  AMPLITUDE  and 

VERTICAL  POSITION  controls.  In  this  position,  voltage  di­

vider  R1

6,

  R17,  R18  and  R19,  sets  the  dc  voltage  at  both 

pin  1  and  pin  3.  Since  the  same  signal  is  applied  in  phase 

to  both  sides  of  the  oscilloscope  vertical  amplifier,  the 
signals  will  cancel  if  the  rejection  ratio  of  the  amplifier 

is  high.  The  position  of  the  trace  on  the  crt  is  the  dc  bal­

ance  point  of  the  oscilloscope  vertical  amplifier,  whether 
or  not  a  signal  is  applied  to  the  input.

DUAL-TRACE  SWITCHING  CIRCUIT

General  Operation

The  Dual-Trace  Switching  Circuit  consists  of  plate-coupled 

switching  multivibrator  V95A/V95B  and  steering  diodes

V102A/V102B,  Under  normal  conditions,  the  circuit  performs 

five  general  functions:

1.  When  the  TEST  FUNCTION  switch  is  set  to  ALTERNATE, 

the  switching  multivibrator  operates  in  a  bistable  configura­
tion.  An  alternate-trace  sync  pulse  from  the  oscilloscope 

at  the  end  of  each  sweep  is  applied  via  pin  16  on  the  inter­

connecting  plug,  switching  the  multivibrator  from  one  state 

to  the  other  by  turning  on  the  steering  diode  that  was  cut 

off.  The  output  of  the  multivibrator  is  a  sequence  of  two 
dc  levels  for  each  complete  cycle  of  operation.  The  two 

levels  produce  two  alternate  traces  on  the  crt.  A  signal  ap­
plied  to  the  Type  TU-7  EXT  INPUT  connector  also  appears 

at  pin  1  of  the  interconnecting  plug,  and  is  displayed  by 
the  lower  trace,  simulating  the  Channel  1  operation  of  a 

dual-trace  preamplifier  plug-in  unit.  The  upper  trace,  which 
simulates  Channel  2,  displays  essentially  no  signal.

2.  In  the  alternate  mode  of  operation,  a  portion  of  the 
applied  signal  is  picked  off  and  used  as  an  internal  trigger 
signal  at  pin  5  of  the  interconnecting  plug.  If  fhe  oscillo­
scope  is  capable  of  internally  triggering  on  the  signal  at  pin 
5,  a  stable  display  of  the  applied  signal  can  be  obtained.

3.  In  the  alternate  mode  of  operation,  if  the  oscilloscope  has 
two  time  bases  that  can  be  operated  alternately,  a  "slave 

pulse"  signal  is  applied  from  the  oscilloscope  via  pin  7  of 

the  interconnecting  plug  through  the  steering  diode  stage  to 
the  switching  multivibrator.  The  slave  pulse  sets  the  state  of 
the  multivibrator  so  the  upper  trace  w ill  be  displayed  when 
Time  Base  B  generates  its  sweep.  At  the  end  of  the  Time 

Base  B  sweep,  a  sync  pulse  applied  through  pin  16  and  the 

steering  diode  causes  the  multivibrator  to  switch  states 
so  the  lower  trace  will  be  displayed  while  Time  Base  A 

generates  its  sweep.

4.  When  the  TEST  FUNCTION  switch  is  set  to  the  CHOPPED 
position,  the  switching  multivibrator  is  in  an  astable  configu­

ration.  The  free-running  rate  of  the  circuit  is  approximately 

100 kc.  The  output  of  the  circuit  is  a  sequence  of  two  dc 
levels  which  produces  a  display  of  fwo  traces  chopped  into 

off-on  segments  at  the  100 kc  rate.  A  signal  applied  to  the 

INPUT  of  the  Type  TU-7  is  ac  coupled  to  pin  1  of  the  inter­

connecting  plug  and  is  displayed  by  the  "on”  segments  of 
the  lower  trace.  The  upper  and  lower  traces  simulate  the 

operation  of  Channels  2  and  1  respectively  of  a  dual-trace 

preamplifier  operated  in  the  chopped  mode.

5.  With  the  Type  TU-7  set  for  chopped  mode,  the  switching 

multivibrator  produces  blanking  pulses  that  are  applied 
through  pin  16  of  the  interconnecting  plug  to  the  oscillo­
scope  blanking  circuit.  The  blanking  pulses  cause  the  crt 

beam  to  be  blanked  during  the  time  the  beam  is  being 

switched  from  one  trace  to  the  other.

Detailed  Operation

When  the  TEST  FUNCTION  switch  is  set  to  the  ALTER­

NATE  position,  the  voltage  in  the  grid  circuit  of  the  switch­
ing  multivibrator  is  set  at  a  level  that  causes  the  circuit  to 

operate  as  a  bistable  multivibrator.  Basic  operation  of  the 

circuit  is  illustrated  in  Fig.  3-2.  To  show  the  operation  of 
the  circuit,  assume  that  V95A  is  initially  conducting  and  V95B 
is  cut  off.  With  current  through  V95A,  V102A  is  forward 
biased  and  conducting  due  to  the  voltage  drop  across  R94. 

D89  and  D90  are  forward  biased  by  current  through  V95A.

(A)

3-2

Summary of Contents for TU-7

Page 1: ...MANUAL Serial N um ber p Tektronix Inc S W Millikan Way P O Box 500 Beaverton Oregon Phone Ml 4 01 61 Cables Tektronix 070 407 36...

Page 2: ...ctly to the fie ld there fore a ll requests fo r repairs and replace ment parts should be directed to the Tek tro n ix Field O ffice or Representative in your area This procedure w ill assure you the...

Page 3: ...structions Section 3 C ircuit Description Section 4 M aintenance Section 5 C a lib ra tio n Section 6 Parts List D iagram A list o f abbreviations and sym bols used in this m anual w ill be found on p...

Page 4: ...TU 7 PLUG IN TEST UNIT SERIAL VERTICAL POSITION AMPLITUDE VARIABLE LOAD POSITIONS ONLY test f u n c t io n HIGH LOAD PULSE REPETITION rate MED LOW LOAD PULSE EXT INPUT PORTLAND OREGON U S A TEKTRONIX...

Page 5: ...cope vertical amplifier ALTERNATE Checks operation of the alternate mode synchronizing circuits in the oscilloscope Also permits checking for proper sweep slaving in oscilloscopes having two time base...

Page 6: ...ing external signals to the oscilloscope vertical system through the Type TU 7 Useful for applying the calibrator signal when setting the gain of the oscillo scope vertical amplifier and for inserting...

Page 7: ...to center the display 4 Adjust the oscilloscope Vertical Gain control for exactly 4 cm vertical distance between the two traces Keep the display centered vertically on the crt while making this adjus...

Page 8: ...5 Sec Cm 3 Adjust the oscilloscope triggering controls for a stable chopped waveform display Fig 2 2 4 Set the oscilloscope Crt Cathode Selector switch to the Chopped Blanking position and check that...

Page 9: ...Set the oscilloscope Time Cm switch to 5 p Sec Cm 3 Adjust the oscilloscope triggering controls for a stable chopped waveform display Fig 2 2 4 Set the oscilloscope Crt Cathode Selector switch to the...

Page 10: ...eck of an oscilloscope pre amplifier system use a 1 series or letter series plug in unit rather than the Type TU 7 When using the Type TU 7 to couple an input signal to the oscilloscope vertical ampli...

Page 11: ...FUNCTION switch operate the dual trace switching circuit or the pulse generator circuit and will be discussed under those headings Detailed Description When TEST FUNCTION SW10 is set to the LOW LOAD p...

Page 12: ...ching multivibrator V95A V95B and steering diodes V102A V102B Under normal conditions the circuit performs five general functions 1 When the TEST FUNCTION switch is set to ALTERNATE the switching mult...

Page 13: ...Circuit Description Type TU 7 Fig 3 2 S im plified schematic o f Dual Trace Sw itching circuit show ing basic o p e ra tio n w ith TEST FUNCTION switch at ALTERNATE A 3 3...

Page 14: ...output level applied to C22 drops from 0 1 volt to about ground set by R88 R89 Any signal now applied to the EXT INPUT connector is attenu ated by the 1000 1 attenuator at the input and applied throug...

Page 15: ...Time Base B sweep When the TEST FUNCTION switch is set to the CHOPPED position the voltage in the grid circuit of the switching multivibrator sets the circuit for astable operation See Fig 3 5 The sw...

Page 16: ...Circuit Description Type TU 7 Fig 3 5 Dual Trace Sw itching circuit show ing o pe ra tio n w ith TEST FUNCTION switch at CHOPPED...

Page 17: ...uit When the TEST FUNCTION switch is set to the PULSE or PULSE position the rate generator operates as an astable circuit One complete multivibrator cycle turns the current switching transistors on an...

Page 18: ...Circuit Description Type TU 7 Fig 3 7 S im plified schematic o f the Pulse G e n e rator circuit w ith TEST FUNCTION switch a t PULSE and AMPLITUDE control fu lly clock wise 3 8...

Page 19: ...voltage on the crt display of the pulse With the AMPLITUDE control turned fully clockwise and the disconnect diodes conduct ing this output is approximately 67 2 volts at the junc tion of D75 and R76...

Page 20: ...rted when Q55 turns on again The switching rate of the rate generator multivibrator is determined by the supply voltages and the resistor capacitor combinations in the base and emitter circuits The fr...

Page 21: ...troubles not apparent during regular operation may be revealed and corrected during calibration CORRECTIVE MAINTENANCE General Information Removal or replacement procedures for most parts in the Type...

Page 22: ...htly over the stud area of the strip Switch Replacement Individual wafers normally are not replaced in switch assemblies Replacement switiches may be ordered from Tektronix either unwired or with the...

Page 23: ...k 1000 9 HIGH LOAD 2 4 k 1000 9 ALTERNATE CHOPPED 35 k 1000 10 LOW LOAD GAIN SET COMMON MODE ALTERNATE CHOPPED 12 1 k 1000 10 HIGH LOAD 1 5 k 1000 10 PULSE PULSE 4 4 k 12 k 1000 11 LOW LOAD GAIN SET C...

Page 24: ...Connect the test instruments to the power line 4 Turn on all test instruments except the indicator oscillo scope 5 Set the indicator oscilloscope front panel controls as fol lows Horizontal Display T...

Page 25: ...n adjustments and test points 4 Cheek VARIABLE Control o Reset the Type TU 7 controls to the positions given under Preliminary Instructions b Set the Time Base A triggering control to free run the swe...

Page 26: ...ns f Check that the upper trace is locked to Time Base B 10 Check Chopped Operation a Remove the Calibrator signal b Set the TEST FUNCTION switch to CHOPPED c Set the indicator oscilloscope Horizontal...

Page 27: ...ope power If the indicator oscilloscope has a plug in sensing switch in the plug in compartment pull forward on the switch plunger g Place the coupling capacitors item 9 under Equip ment Required on t...

Page 28: ...counter sunk P pico or 10 1 2 dia diameter PHS pan head steel div division piv peak inverse voltage EMC electrolytic metal cased piste plastic EMT electroyltic metal tubular PMC paper metal cased ext...

Page 29: ...Parts List Type TU 7 EXPLODED VIEW 6 2 CABLt HARNESS AND STRIP DETflIL...

Page 30: ...u inch 210 840 1 LUG solder pot plain 5 333 791 1 PANEL front 6 366 220 1 KNOB AMPLITUDE charcoal Includes 213 020 1 SCREW set 6 32 x V8 inch HSS Mounting Hardware not included 210 590 1 NUT hex 3 8 3...

Page 31: ...inch BHS 18 Resistor Mounting Hardware 210 478 1 NUT hex aluminum 5 u x 7 1 32 inch 210 601 1 EYELET brass tapered barrel 211 553 1 SCREW 6 32 x 1y2 inch RHS 211 507 1 SCREW 6 32 x 5 1 6 inch BHS 19...

Page 32: ...LIP diode 30 136 0150 00 4 SOCKET 3 pin Mounting Hardware For Board not included 210 0586 00 6 NUT keps 4 40 x y 4 inch 211 0008 00 6 SCREW 4 40 x inch 31 179 0850 00 1 CABLE harness chassis 32 179 08...

Page 33: ...5 281 518 47 pf Cer 500 v C47 283 051 0 0033 pf Cer 100 v 5 C48 283 004 0 02 pf Cer 150 v C49 283 026 0 2 pf Cer 25 v C50 283 026 0 2 pf Cer 25 v C52 281 525 470 pf Cer 500 v C55 281 518 47 pf Cer 500...

Page 34: ...51 108 Replaceable by 2N2501 064 151 097 2N955 074 151 083 Selected from 2N964 Resistors Resistors are fixed composition 10 unless otherwise indicated R10 302 103 10k Y a w Rll 311 395 2 5 k Var VARIA...

Page 35: ...Var AMPLITUDE R74 323 633 801 O A w Prec 1 R76 321 068 49 9 0 Vs w Prec 1 R78 321 289 10k y8 w Prec 1 R79 302 225 2 2 meg A w R80A 316 104 100 k A w R80B 316 104 100k A w R80C 316 104 100 k A w R80D...

Page 36: ...25 k 10 w w w 5 R116 308 018 2 5 k 10 w w w 5 R121 324 603 27 8 k 1 w Prec 1 R122 308 025 20 k 10 w W W 5 R122 308 027 30 k 10 w W W 5 R123 312 642 5000 20 w w w 1 R124 301 623 62 k y2w 5 R125 303 433...

Page 37: ...ns CONTROLS SETTINGS VARIABLE centered VERTICAL POSITION centered AMPLITUDE centered REPETITION RATE MED Input Signal none Pulse Gen ckt A ll other ckts TEST FUNCTION PULSE CHOPPED Test O scilloscope...

Page 38: ......

Page 39: ...CIRCUIT DIAGRAM rl Q T 0 Z i TLST UNIT...

Page 40: ...t and component improvements to our instruments as soon as they are developed and tested Sometimes due to printing and shipping require ments we can t get these changes immediately into printed manual...

Page 41: ...R21 521 0615 00 5 05 k 1 8 w Prec 1 2 R32 CHANGE 502 0222 00 TO 2 2 k 1 2 W 10 CVf 285 0627 00 0055 M E PTM 100 V CkS 285 0685 OO 0 2 2 pF REM 100 V CA9 285 0625 00 A7 pF REM 100 V R 5 5 0 1 0155 00...

Page 42: ...TYPE 1M1 TENT S N 1 10 Page 2 of 2 SCHEMATIC CORRECTION PA R TIA L C IR C U IT D IA G R A M M 9 7 3 1 1 2 6 5...

Page 43: ...Parts List Correction Change to R109 308 0093 00 12 K 8 W W W 5 M 9 7 3 3 H 6 5...

Page 44: ...H W L 44 c0 74 t 6 0 6 7 d f w 4 rco 5 7 7 j 2 5 1 r v i 1y 6 w 4 V t r W r r 4 r i L V l t f f...

Reviews: