background image

with permanent connection inside housing, it is not equipped with
either switches or internal devices to protect against overload of

current: the installation will include an overload protection and a
two-phase circuit-breaker, placed as near as possible to the

instrument, and located in a position that can easily be reached by
the user and marked as instrument disconnecting device which

interrupts the power supply to the equipment. It is also
recommended that the supply of all the electrical circuits connected

to the instrument must be protect properly, using devices (ex.
fuses) proportionate to the circulating currents. It is strongly

recommended that cables with proper insulation, according to the
working voltages and  temperatures, be used. Furthermore, the

input cable of the probe has to be kept separate from line voltage
wiring. If the input cable of the probe is screened, it has to be

connected to the ground with only one side. Whether the
instrument is 12 V version it’s recommended to use an external

transformer TCTR, or with equivalent features, and to use only one
transformer for each instrument because there is no insulation

between supply and input. We recommend that a check should be
made that the parameters are those desired and that the

application functions correctly before connecting the outputs to the
actuators so as to avoid malfunctioning that may cause

irregularities in the plant that could cause damage to people, things
or animals.

Tecnologic S.p.A. and its legal representatives do not assume
any responsibility for any damage to people, things or animals
deriving from violation, wrong or improper use or in any case
not in compliance with the instrument’s features.

3.4 - ELECTRICAL WIRING DIAGRAM

-

+

+

-

TLK 38

INPUT

SUPPLY

0...1 V

ACTIVE

0/4..20 m A

0..50/60 mV

0/1..5 V

0/2..10 V

AC TIVE

PASSIVE

(2 wires)

4..20 m A

4..20 m A

OUT 10 V DC

M ax 20  mA

gen.

e xt.

R ELAY

1

2

3

C

SSR

SSR : 8 m A / 8 VD C

RELAYS: 8A-AC1 (3A-AC3) 250 VAC

7

OUT 1

NC

4

NO

5

6

9

8

10

PTC

N TC

I

+

Pt100

11

+

12

TC

+

-

+

-

+

NO

NC

C

+

-

OU T 2

4 - FUNCTIONS

4.1 - MEASURING AND VISUALIZATION

All the parameters referring measurements are contained in the
group 

]

InP”.

Depending on the model required the input accept:

C

: Thermocouples temperature probes (J,K,S and TECNOLOGIC

IRS Infrared sensors), mV signals (0..50/60 mV, 12..60 mV),
Thermoresistances PT100.

E

 : Thermocouples temperature probes (J,K,S and TECNOLOGIC

IRS Infrared sensors), mV signals (0..50/60 mV, 12..60 mV),
Thermistors PTC and NTC.

I

 : normalized analogue signals 0/4..20 mA

V

 : normalized analogue signals 0..1 V, 0/1..5 V, 0/2..10 V

Depending on the model, using par. 

“SEnS”, 

it’s possible to select

the type of input probe, which can be :
- for thermocouples J (J), K (CrAL), S (S) or for infrared sensors

serie TECNOLOGIC IRTC1 with linearization J (Ir.J) or K (Ir.CA)
- for thermoresistances Pt100 IEC (Pt1) or thermistors PTC

KTY81-121 (Ptc) or NTC 103AT-2 (ntc)

- for normalised signals in current 0..20 mA (0.20) or 4..20 mA
(4.20)

- for normalised signals in tension 0..1 V (0.1), 0..5 V (0.5), 1..5 V
(1.5), 0..10 V (0.10) or 2..10 V (2.10).

- for normalised signals in tension 0..50 mV (0.50), 0..60 mV (0.60),
12..60 mV (12.60).

We recommend to switch on and off the instrument when these
parameters are modified, in order to obtain a correct measuring.

For the instruments with input for temperature probes (tc, rtd) it’s
possible to select, through par. 

“Unit”,

 the unit of measurement  

(°C, °F) and, through par. 

“dP” 

(Pt100, PTC and NTC only)

 

the

desired resolution (0=1°; 1=0,1°).

Instead, with regards to the instruments with normalised analogue
input signals, it is first necessary to program the desired resolution
on par. 

“dP”

  (0=1; 1=0,1; 2=0,01; 3=0,001) and then, on par.

"SSC"

, the value that the instrument must visualise at the

beginning of the scale (0/4 mA, 0/12 mV, 0/1 V o 0/2 V) and, on
par. 

"FSC", 

the value that the instrument must visualise at the end

of the scale (20 mA, 50 mV, 60 mV, 5 V or 10 V).

The instrument allows for measuring calibration, which may be
used to recalibrate the instrument according to application needs,
by using par. 

“OFSt”

 and 

“rot”.

Programming par. “rot”=1,000, in par. “OFSt” it is possible to set a
positive or negative offset that is simply added to the value read by

the probe before visualisation, which remains constant for all the
measurements.

If instead, it is desired that the offset set should not be constant for
all the measurements, it is possible to operate the calibration on  

any two points. 
In this case, in order to decide which values to program on par.

“OFSt” and “rot”, the following formulae must be applied :

“rot” = (D2-D1) / (M2-M1)

“OFSt” = D2 - (“rot” x M2)

where:

M1 =measured value 1
D1 = visualisation value when the instrument measures M1

M2 =measured value 2
D2 = visualisation value when the instrument measures M2

It then follows that the instrument will visualise  :

DV = MV x “rot” + “OFSt”

where:  DV = visualised value 

MV= measured value

Example 1: It is desired that the instrument visualises the value
effectively measured at 20° but that, at 200°, it visualises a value

lower than 10° (190°).    
Therefore :  M1=20 ;  D1=20 ;  M2=200 ;  D2=190

“rot” = (190 - 20) / (200 - 20) = 0,944
“OFSt” = 190 - (0,944 x 200) = 1,2
Example 2: It is desired that the instrument visualises 10° whilst the

value actually measured is 0°, but, at 500° it visualises a 50° higher
value (550°).

Therefore :  M1=0 ;  D1=10 ;  M2=500 ;  D2=550
“rot” = (550 - 10) / (500 - 0) = 1,08
“OFSt” = 550 - (1,08 x 500) = 10

By using par.

 “FiL” 

it is possible to

 

program time constant of the  

software filter for the input value measured, in order to reduce

noise sensitivity (increasing the time of reading).
In case of measurement error, the instrument supplies the power
as programmed on par.  

“OPE”.

This power will be calculated according to cycle time programmed
for the PID controller, while for the ON/OFF controllers the cycle

time is automatically considered to be equal to 20 sec. (e.g. In the
event of probe error with ON/OFF control and “OPE”=50, the

control output will be activated for 10 sec., then it will be
deactivated for 10 sec. and so on until the measurement error

remains.).
By using par. 

“InE”

 it is also possible to decide the conditions of

the input error, allowing the instrument to give the power

programmed on par. “OPE” as output.
The possibilities of par. “InE” are :

= Or : the condition occurs in case of over-range or probe breakage
= Ur : the condition occurs in case of under-range or probe

breakage

TECNOLOGIC spa - TLK 38

 

- OPERATING INSTRUCTIONS - Vr. 03 - ISTR 06519 - PAG. 4

Summary of Contents for TLK 38

Page 1: ...RING AND VISUALIZATION 4 1 FUNCTIONS 4 ELECTRICAL WIRING DIAGRAM 3 4 ELECTRICAL CONNECTIONS 3 3 MECHANICAL MOUNTING 3 2 PERMITTED USE 3 1 INFORMATION ON INSTALLATION AND USE 3 ACTIVE SET POINT SELECTION 2 5 CONTROL STATES 2 4 PARAMETER PROGRAMMING LEVELS 2 3 SELECTION OF CONTROL STATE AND PARAMETER PROGRAMMING 2 2 FAST PROGRAMMING OF SET POINT 2 1 PROGRAMMING 2 FRONT PANEL DESCRIPTION 1 2 GENERAL ...

Page 2: ...n to normal functioning automatically 2 2 SELECTION OF THE CONTROL STATE AND PARAMETER PROGRAMMING By pushing key P and holding it down for approx 2 sec it is possible to enter into the main selection menu Using the UP or DOWN keys it is then possible to roll over the selections to enter into the operating parameters menu OPEr to swap the regulator to the manual control state and therefore to prog...

Page 3: ...s possible to manually program the power percentage given as output by the controller by deactivating automatic control When the instrument is swapped to manual control the power percentage is the same as the last one supplied and can be modified using the UP and DOWN keys As in the case of automatic control the programmable values range from H100 100 to C100 100 To return to automatic control sel...

Page 4: ... 0 50 mV 0 50 0 60 mV 0 60 12 60 mV 12 60 We recommend to switch on and off the instrument when these parameters are modified in order to obtain a correct measuring For the instruments with input for temperature probes tc rtd it s possible to select through par Unit the unit of measurement C F and through par dP Pt100 PTC and NTC only the desired resolution 0 1 1 0 1 Instead with regards to the in...

Page 5: ...2 rEG All the parameters referring to Neutral Zone ON OFF control are contained in the group rEG This type of control can be obtained when 2 outputs are programmed respectively as 1 rEG and 2 rEG and the par Cont nr The Neutral Zone control is used to control plants in which there is an element which causes a positive increase ex Heater humidifier etc and an element which causes a negative increas...

Page 6: ...al Band tcr1 Cycle time of the output 1rEG Int Integral Time dEr Derivative Time FuOC Fuzzy Overshoot Control and for the Double Action PID control also tcr 2 Cycle time of the output 2rEG Prat Power Ratio P 2 rEG P 1 rEG To activate the AUTO TUNING function proceed as follows 1 Program and activate the desired Set Point 2 Program par Cont Pid 3 Program par Func according to the process to be cont...

Page 7: ...ogram the desired ramp and if it automatic tuning is desired enable the Self tuning function 4 9 SOFT START FUNCTION All the parameters referring to the Soft Start functioning are contained in the group rEG The Soft Start function only works through PID control and allows the limitation of control power when the instrument is switched on for a programmable period of time This is useful when the ac...

Page 8: ...d in the following descriptions ALARM BEHAVIOUR AT SWITCH ON the alarm output may behave in two different ways depending on the value added to par Ab1 0 NORMAL BEHAVIOUR The alarm is always activated when there are alarm conditions 1 ALARM NOT ACTIVATED AT SWITCH ON If when switched on the instrument is in alarm condition the alarm is not activated It will be activated only when the process value ...

Page 9: ...meters through the device TECNOLOGIC KEY01 with 5 poles connector This device it s mainly useable for the serial programming of the instruments which need to have the same parameters configuration or to keep a copy of the programming of an instrument and allow its rapid retransmission To use the device KEY01 it s necessary that the device or instrument are being supplied To transfer the configurat...

Page 10: ...2 Out1 Out2 OFF Output where alarm AL1 is addressed OAL1 22 Note Def Range Description Par no no yES Alarm AL1 activation in case of measuring error AL1i 30 OFF OFF 9999 sec Activation delay of alarm AL1 AL1d 29 1 OFF 9999 Alarm AL1 hysteresis HAL1 28 9999 AL1L 9999 High threshold band alarm AL1 or Maximum set alarm AL1 for high or low alarm AL1H 27 1999 1999 AL1H Low threshold band alarm AL1 or M...

Page 11: ...e measured variable is over the probe s limits over range oooo The measured variable is under the probe s limits under range uuuu Verify the correct connection between probe and instrument and then verify the correct functioning of the probe Probe interrupted Action Reason Error In error conditions the instrument provides an output power as programmed on par OPE and activates the desired alarms if...

Page 12: ... 5 fs tc S 1 fs Sampling rate 130 ms Display 4 Digit Red h 12 mm Compliance ECC directive EMC 2004 108 CE EN 61326 ECC directive LV 2006 95 CE EN 61010 1 Approvals C UL file n E206847 7 5 MEASURING RANGE TABLE 2 10 V SEnS 2 10 0 10 V SEnS 0 10 1 5 V SEnS 1 5 0 5 V SEnS 0 5 0 1 V SEnS 0 1 12 60 mV SEnS 12 60 0 60 mV SEnS 0 60 0 50 mV SEnS 0 50 4 20 mA SEnS 4 20 199 9 999 9 19 99 99 99 1 999 9 999 1...

Reviews: