background image

 

 

 

Data Sheet: Belleta

®

 iEA Series –Single Output Eighth Brick

 

©2004  TDK Innoveta®  Inc.  
iEAFullDatasheet 032707  3/29/2007  Revision 2.0 

 

 (877) 498-0099

 

37/41 

 
 
Heat transfer by convection can be 
enhanced by increasing the airflow rate that 
the power module experiences.  The 
maximum output current of the power 
module is a function of ambient temperature 
(T

AMB

) and airflow rate as shown in the 

thermal performance figures on the thermal 
performance page for the power module of 
interest.  The curves in the figures are 
shown for natural convection through 2 m/s 
(400 ft/min).  The data for the natural 
convection condition has been collected at 
0.3 m/s (60 ft/min) of airflow, which is the 
typical airflow generated by other heat 
dissipating components in many of the 
systems that these types of modules are 
used in.  In the final system configurations, 
the airflow rate for the natural convection 
condition can vary due to temperature 
gradients from other heat dissipating 
components. 

 

Operating Information: 

 
Over-Current Protection: 

The power 

modules have current limit protection to 
protect the module during output overload 
and short circuit conditions.  During overload 
conditions, the power modules may protect 
themselves by entering a hiccup current limit 
mode.  The modules will operate normally 
once the output current returns to the 
specified operating range.  There is a typical 
delay of 30mS from the time an overload 
condition appears at the module output until 
the hiccup mode will occur.   

 

Output Over-Voltage Protection: 

The 

power modules have a control circuit, 
independent of the primary control loop that 
reduces the risk of over voltage appearing at 
the output of the power module during a 
fault condition. If there is a fault in the 
primary regulation loop, the over voltage 
protection circuitry will cause the power 
module to enter a hiccup over-voltage mode 
once it detects that the output voltage has 
reached the level indicated on the Electrical 
Data section for the power module of  
interest.  When the condition causing the 
over-voltage is corrected, the module will 
operate normally.   
 

 
 
An optional latching over-voltage protection 
is available.  On modules with this feature, 
the power module will shut down once it 
detects that the output voltage has reached 
the level indicated on the Electrical Data 
section for the power module of interest.  
The module remains off unless the input 
voltage is recycled.   

 
Thermal Protection: 

When the power 

modules exceed the maximum operating 
temperature, the modules may turn off to 
safeguard the power unit against thermal 
damage.  The module will auto restart as the 
unit is cooled below the over temperature 
threshold.  On modules with the latching 
over-voltage protection feature, the unit may 
latch off during a severe over temperature 
condition; the module remains off unless the 
input voltage is recycled. 

 

Remote On/Off: 

- The power modules have 

an internal remote on/off circuit.  The user 
must supply an open-collector or compatible 
switch between the Vin(-) pin  and the on/off 
pin.   The maximum voltage generated by 
the power module at the on/off terminal is 
15V.  The maximum allowable leakage 
current of the switch is 50uA.   The switch 
must be capable of maintaining a low signal 
Von/off < 1.2V while sinking 1mA.  
 
The standard on/off logic is positive logic.  
The power module will turn on if terminal 2 is 
left open and will be off if terminal 2 is 
connected to terminal 3.  If the positive logic 
circuit is not being used, terminal 2 should 
be left open. 

 

An optional negative logic is available.  The 
power module will turn on if terminal 2 is 
connected to terminal 3, and it will be off if 
terminal 2 is left open.  If the negative logic 
feature is not being used, terminal 2 should 
be shorted to terminal 3. 
 
 
 
 
 
 
 
 
 

Summary of Contents for Belleta iEA Series

Page 1: ...vironments Standard Features Size 58 4mm x 22 9 mm x 8 8 mm 2 3 in x 0 9 in x 0 347 in Thru hole pins 3 68 mm 0 145 High efficiency greater than 89 1500Vdc isolation voltage Meets basic insulation spa...

Page 2: ...t Positive Logic On Off Negative Logic On Off 0 110 Pin Length 0 200 Pin Length 0 145 Pin Length Latching OVP 00 X X 01 X X 02 X X 03 X X 04 X X 05 X X 11 X X X 15 X X X Product Offering Code Input Vo...

Page 3: ...wise specified tolerances are x x 0 5 0 02 x xx and x xxx 0 25 0 010 1 02 0 040 DIA Pin 2 03 0 080 DIA Stand Offs 6 Pins 1 57 0 062 DIA Pin 2 59 0 102 DIA Stand Offs 2 Pins Recommended Hole Pattern to...

Page 4: ...Time from on off 35 mS Vo 0 to 0 1 Vo nom Vin Vi nom Io Io max Tc 25 C Output Voltage Rise Time 50 mS Io Io max Tc 25 C Vo 0 1 to 0 9 Vo nom Inrush Transient 0 2 A2 s Input Reflected Ripple 15 mApp S...

Page 5: ...egulate the output voltage but the output ripple may increase Output Current Limiting Threshold 8 5 A Vo 0 9 Vo nom Tc Tc max Short Circuit Current 12 A Vo 0 25V Tc 25 C 80 200 mVpp Output Ripple and...

Page 6: ...pical Efficiency vs Input Voltage at Ta 85 degrees iEA48007A120V 000 Typical Power Dissipation vs Input Voltage at Ta 85 degrees 70 75 80 85 90 95 0 0 7 1 4 2 1 2 8 3 5 4 2 4 9 5 6 6 3 7 Output Curren...

Page 7: ...utput voltage response to load step from 50 to 75 of full load with output current slew rate of 0 1A uS iEA48007A120V 000 Typical Output voltage response to load step from 50 to 75 of full load with o...

Page 8: ...put Ripple at nominal input voltage and full load at Ta 25 degrees iEA48007A120V 000 Typical Input Current vs Input Voltage Characteristics iEA48007A120V 000 Typical Output Voltage vs Input Voltage Ch...

Page 9: ...s described in the Thermal Management section Due to the large number of variables in system design TDK Innoveta recommends that the user verify the module s thermal performance in the end application...

Page 10: ...the output voltage but the output ripple may increase Output Current Limiting Threshold 20 A Vo 0 9 Vo nom Tc Tc max Short Circuit Current 14 A Vo 0 25V Tc 25 C 55 125 mVpp Output Ripple and Noise Vol...

Page 11: ...al Efficiency vs Input Voltage at Ta 85 degrees iEA48015A050V 000 Typical Power Dissipation vs Input Voltage at Ta 85 degrees 70 75 80 85 90 95 1 2 4 3 8 5 2 6 6 8 9 4 10 8 12 2 13 6 15 Output Current...

Page 12: ...Output voltage response to load step from 50 to 75 of full load with output current slew rate of 0 1A uS iEA48015A050V 000 Typical Output voltage response to load step from 50 to 75 of full load with...

Page 13: ...at nominal input voltage and full load at Ta 25 degrees iEA48015A050V 000 Typical Input Current vs Input Voltage Characteristics iEA48015A050V 000 Typical Output Voltage vs Input Voltage Characterist...

Page 14: ...rmal Management section Due to the large number of variables in system design TDK Innoveta recommends that the user verify the module s thermal performance in the end application The critical componen...

Page 15: ...old 29 A Vo 0 9 Vo nom Tc Tc max Short Circuit Current 20 A Vo 0 25V Tc 25 C 35 100 mVpp Output Ripple and Noise Voltage 11 mVrms Measured across one 1 0 uF ceramic capacitor and a 10uF tantalum capac...

Page 16: ...ciency vs Input Voltage at Ta 85 degrees iEA48020A033V 000 Typical Power Dissipation vs Input Voltage at Ta 85 degrees 70 75 80 85 90 95 1 2 9 4 8 6 7 8 6 10 5 12 4 14 3 16 2 18 1 20 Output Current A...

Page 17: ...Typical output voltage response to load step from 50 to 75 of full load with output current slew rate of 0 1A uS iEA48020A033V 000 Typical output voltage response to load step from 50 to 75 of full lo...

Page 18: ...le at nominal input voltage and full load at Ta 25 degrees iEA48020A033V 000 Typical Input Current vs Input Voltage Characteristics iEA48020A033V 000 Typical Output Voltage vs Input Voltage Characteri...

Page 19: ...ermal Management section Due to the large number of variables in system design TDK Innoveta recommends that the user verify the module s thermal performance in the end application The critical compone...

Page 20: ...te the output voltage but the output ripple may increase Output Current Limiting Threshold 31 A Vo 0 9 Vo nom Tc Tc max Short Circuit Current 20 A Vo 0 25V Tc 25 C 35 100 mVpp Output Ripple and Noise...

Page 21: ...1 output voltage iEA48025A025V 000 Typical startup characteristic from input voltage application at full load Ch3 input voltage Ch 1 output voltage iEA48025A025V 000 Typical Output Current Limit Chara...

Page 22: ...oltage vs Input Voltage Characteristics Change of Vout Trim Down Resistor Kohm Change of Vout Trim Up Resistor Kohm 5 91 8K 5 106K 10 40 8K 10 53 3K e g trim up 5 Rup 5 1 2 5 100 5 1 225 5 510 5 10 2...

Page 23: ...hermal Management section Due to the large number of variables in system design TDK Innoveta recommends that the user verify the module s thermal performance in the end application The critical compon...

Page 24: ...e the output voltage but the output ripple may increase Output Current Limiting Threshold 35 A Vo 0 9 Vo nom Tc Tc max Short Circuit Current 20 A Vo 0 25V Tc 25 C 35 100 mVpp Output Ripple and Noise V...

Page 25: ...full load Ch1 on off signal Ch 4 output voltage iEA48025A018V 000 Typical startup characteristic from input voltage application at full load Ch1 input voltage Ch 4 output voltage iEA48025A018V 000 Typ...

Page 26: ...istics iEA48025A018V 000 Typical Output Voltage vs Input Voltage Characteristics Change of Vout Trim Down Resistor Kohm Change of Vout Trim Up Resistor Kohm 5 91 8K 5 45 2K 10 40 8K 10 21 2K e g trim...

Page 27: ...nagement section Due to the large number of variables in system design TDK Innoveta recommends that the user verify the module s thermal performance in the end application The critical component shoul...

Page 28: ...te the output voltage but the output ripple may increase Output Current Limiting Threshold 35 A Vo 0 9 Vo nom Tc Tc max Short Circuit Current 20 A Vo 0 25V Tc 25 C 30 100 mVpp Output Ripple and Noise...

Page 29: ...at full load Ch3 on off signal Ch 1 output voltage iEA48025A015V 000 Typical startup characteristic from input voltage application at full load Ch3 input voltage Ch 1 output voltage iEA48025A015V 000...

Page 30: ...EA48025A015V 000 Typical Output Voltage vs Input Voltage Characteristics Change of Vout Trim Down Resistor Kohm Change of Vout Trim Up Resistor Kohm 5 91 8K 5 18 9K 10 40 8K 10 7 5K e g trim up 5 Rup...

Page 31: ...rmal Management section Due to the large number of variables in system design TDK Innoveta recommends that the user verify the module s thermal performance in the end application The critical componen...

Page 32: ...ate the output voltage but the output ripple may increase Output Current Limiting Threshold 33 A Vo 0 9 Vo nom Tc Tc max Short Circuit Current 20 A Vo 0 25V Tc 25 C 45 100 mVpp Output Ripple and Noise...

Page 33: ...Ch1 on off signal Ch3 output voltage iEA48025A012V 000 Typical startup characteristic from input voltage application at full load Ch1 input voltage Ch3 output voltage iEA48025A012V 000 Typical transi...

Page 34: ...put Voltage Characteristics iEA48025A012V 000 Typical Output Voltage vs Input Voltage Characteristics Change of Vout Trim Down Resistor Kohm Change of Vout Trim Up Resistor Kohm 5 18K 5 20K 10 8K 10 1...

Page 35: ...rmal Management section Due to the large number of variables in system design TDK Innoveta recommends that the user verify the module s thermal performance in the end application The critical componen...

Page 36: ...tered in most modern electronic systems with distributed power architectures The electronic equipment in networking telecom wireless and advanced computer systems operates in similar environments and...

Page 37: ...age protection circuitry will cause the power module to enter a hiccup over voltage mode once it detects that the output voltage has reached the level indicated on the Electrical Data section for the...

Page 38: ...according to the following equation For all outputs except 1 2V Rdown 510 Vo 10 2 1000 For 1 2V output only Rdown 100 Vo 2 1000 The current limit set point does not increase as the module is trimmed...

Page 39: ...DK Innoveta power modules are designed for use in a wide variety of systems and applications For assistance with designing for EMC compliance please contact TDK Innoveta technical support Input Impeda...

Page 40: ...age and clearance distances when routing traces near the power module As part of the production process the power modules are hi pot tested from primary and secondary at a test voltage of 1500Vdc To p...

Page 41: ...e No license is granted by implication or otherwise under any patent or patent rights of TDK Innoveta TDK Innoveta components are not designed to be used in applications such as life support systems w...

Reviews: