background image

1 – 4

Operation

greater than

±

1 V, or the output is outside

±

10 V. The overload signal

can also be asserted on the status pin. See section 2.4.5.

1.2.4

Inputs

The two input connectors, labeled A and B, are in the INPUT block
of the front panel. [Input] selects between A, A

B, and Ground. A

& B are voltage inputs with input impedance of 100 M

in parallel

with

35 pF. The connector shields are tied to each other, and can be

either floated or grounded to Signal Ground using [Shield]. Input
A is the non-inverting input. When input A

B is selected, B is the

inverting input.

When input A is selected, the connector shield is used as the inverting
input, and acts as the reference for the A signal. Thus by selecting
Shield Float, a remote ground reference can be brought to the unit
using a single BNC. As long as the common-mode voltage limit is
satisfied, this configuration can be useful in breaking ground loops.

If the common-mode limits are exceeded, the inputs will be (sepa-

overload limits

rately) clamped to

∼ ±

6 V through a series input resistor of 100

.

The maximum signal voltage is

±

1 V, while the maximum common

mode voltage is

±

5 V. Exceeding these limits will cause

OVLD

to

light up.

When the Ground input is selected, the user inputs A & B are left
floating and the amplifier is internally grounded at the front-end,
after the series resistors. The Input grounded noise is the limit of the
amplifier’s noise.

Pressing [Couple] selects AC (16 mHz

3dB) or DC coupling.

1.2.5

Output

The output of the instrument is located in the OUTPUT block of the
front panel. The output is referred to Signal Ground, which is tied to
the outside of the BNC connector.

The chassis of the SIM910 is tied to the power supply return, and

not

Note about grounds

Signal Ground. When operating in the SIM900, the chassis and Signal
Ground are tied together in the SIM900 Mainframe. If the amplifier is
operated with an independent supply, the output will be referenced
to Signal Ground (pin 1 on DB–15 J401). The Signal Ground and the
chassis are tied through back to back protection schottky diodes, so
they can’t be more than

∼ ±

0

.

35 V apart.

The instrument’s output impedance is 50

, and can drive load

impedances from

down to 50

. Note: when driving a 50

load

the gain will be half that displayed on the LEDs.

SIM910

JFET Preamp

Summary of Contents for SIM910

Page 1: ...Operation and Service Manual JFET Preamp SIM910 Stanford Research Systems Revision 2 1 May 8 2007...

Page 2: ...must be returned to a Stanford Research Systems authorized service facility Contact Stanford Research Systems or an authorized representative before returning this product for repair Information in th...

Page 3: ...tput 1 5 1 4 SIM Interface 1 6 2 Remote Operation 2 1 2 1 Index of Common Commands 2 2 2 2 Alphabetic List of Commands 2 3 2 3 Introduction 2 4 2 4 Commands 2 5 2 5 Register Model 2 9 3 Performance Te...

Page 4: ...ii Contents SIM910 JFET Preamp...

Page 5: ...ications Regarding Use with Photomultipliers The front end amplifier of this instrument is easily damaged if a photomultiplier is used improperly with the amplifier When left CAUTION completely unterm...

Page 6: ...may Find on SRS Products Symbol Description Alternating current Caution risk of electric shock Frame or chassis terminal Caution refer to accompanying documents Earth ground terminal Battery Fuse On s...

Page 7: ...e instructions WARNING are not obeyed A caution means that damage to the instrument or other equipment CAUTION is possible Front panel buttons are set as Button Adjust is shorthand for Adjust Adjust F...

Page 8: ...A B GND Input coupling AC or DC Input shields Floating or ground Maximum input differential 1 V before overload Maximum input common mode 5 V clamped at 6 V Maximum output voltage 10 V before overloa...

Page 9: ...necessary information to get started quickly with the SIM910 In This Chapter 1 1 Instrument Overview 1 2 1 2 Front Panel Operation 1 2 1 2 1 Gain 1 3 1 2 2 Offset 1 3 1 2 3 Overload 1 3 1 2 4 Inputs...

Page 10: ...iminated by only clocking the microprocessor when settings are being changed The complete amplifier configuration i e gain settings coupling etc is saved in non volatile memory The front end amplifier...

Page 11: ...g Gain or Gain in the GAIN block on the upper right of the module The change is reflected in the LEDs to the left of the buttons Pushing Gain when on gain 100 produces no effect Pushing Gain when on g...

Page 12: ...The maximum signal voltage is 1 V while the maximum common mode voltage is 5 V Exceeding these limits will cause OVLD to light up When the Ground input is selected the user inputs A B are left floatin...

Page 13: ...e output and the SIM interface connector see Figure 1 2 The rear panel output is wired in parallel to the front panel output The output is not designed to drive 2 simultaneous 50 loads If one output i...

Page 14: ...d in Table 1 1 Direction Pin Signal Src Dest Description 1 SIGNAL GND MF SIM Ground reference for signal 2 STATUS SIM MF Status service request GND asserted 5 V idle 3 RTS MF SIM HW Handshake 5 V talk...

Page 15: ...the PC TXD directly to TD and similarly RTS RTS and CTS CTS In other words a null modem style cable is not needed To interface directly to the DB 9 male DTE RS 232 port typically found on contemporary...

Page 16: ...Power Ground are tied through protection schot tky diodes and can therefore not be more than 0 35 V apart These two ground lines should be separately wired back to a single low impedance ground sourc...

Page 17: ...Commands 2 3 2 3 Introduction 2 4 2 3 1 Power on configuration 2 4 2 3 2 Buffers 2 4 2 3 3 Device Clear 2 4 2 4 Commands 2 5 2 4 1 Command syntax 2 5 2 4 2 Notation 2 5 2 4 3 Examples 2 5 2 4 4 Amplif...

Page 18: ...ameter for set commands illegal for queries Amplifier RST 2 6 Reset GAIN i 2 6 Gain COUP i 2 6 Coupling INPT i 2 6 Input SHLD i 2 6 Shield Status STB 2 7 Status Byte SRE i 2 7 Service Request Enable S...

Page 19: ...8 Identify RST 2 6 Reset SRE i 2 7 Service Request Enable STB 2 7 Status Byte TST 2 8 Self Test C CONS i 2 8 Console Mode COUP i 2 6 Coupling G GAIN i 2 6 Gain I INPT i 2 6 Input O OVLD 2 7 Overload S...

Page 20: ...oldface 2 3 2 Buffers Incoming data from the host interface is stored in a 32 byte input buffer Characters accumulate in the input buffer until a command terminator either hCRi or hLFi is received at...

Page 21: ...out any surrounding characters are always required Do not send or as part of the command Multiple parameters are separated by commas Commands are ter minated by either hCRi or hLFi characters Null com...

Page 22: ...unded shield floated RST Example Gain GAIN i Set query the amplifier gain to i 1 2 5 10 20 50 100 GAIN Example 50 Coupling COUP i Set query the amplifier input coupling COUP 1 sets AC coupling while C...

Page 23: ...le Status Monitors Overload STOL i Set query the Status Monitors Overload mode to i 0 1 STOL 1 causes the STATUS signal pin 2 on J401 Dsub 15 connec tor to become a real time monitor of the amplifier...

Page 24: ...N VER where is the 6 digit serial number and is the firmware revision level IDN Example Stanford Research Systems SIM910 s n003456 ver2 10 Self Test TST Query the device self test The SIM910 does not...

Page 25: ...es it to be cleared Weight Bit Flag 1 0 EXE 2 1 CMD 4 2 QRE 8 3 OVR 16 4 SERR 32 5 URQ 64 6 DCAS 128 7 OVLD EXE Execution Error Indicates an error in a command that was successfully parsed Out of rang...

Page 26: ...n the SRE corresponds one to one with a bit in the SB register and acts as a bitwise AND of the SB flags If any bits are simultaneously set in both the SB and the SRE then a service request is indicat...

Page 27: ...he module should be warmed up for at least 15 minutes before making any adjustments In This Chapter 3 1 Offset 3 2 3 2 Calibration 3 2 3 2 1 Adjusting the CMRR 3 2 3 2 2 Adjusting the gain 3 2 3 2 3 A...

Page 28: ...d be running for at least 15 minutes before doing any adjustments 3 2 1 Adjusting the CMRR The common mode adjustment minimizes the common mode re sponse of the amplifier by balancing the two sides of...

Page 29: ...equency at the test point 2 5 MHz 3 3 Performance Tests The following curves are typical noise density vs frequency for the SIM910 10 0 10 1 10 2 10 3 10 4 10 5 1 10 Frequency Hz Voltage Noise nV Hz R...

Page 30: ...ommunication connector pin specifications 3 4 SIM910 Performance Test Record Description Measured Value Serial Number Clock Frequency at TP401 Gain 1 Gain 2 Gain 5 Gain 10 Gain 20 Gain 50 Gain 100 CMR...

Page 31: ...910 circuit design A complete parts list and circuit schematics are included In This Chapter 4 1 Circuit Discussion 4 2 4 1 1 Input amplifier and protection circuitry 4 2 4 1 2 Programmable gain stage...

Page 32: ...U201 and U203 are closed based on gain The overall gain of the SIM910 is trimmed at U204 the gain of which is adjustable by 10 The final output stage rolls the gain off slowly above 1 MHz and includes...

Page 33: ...ecoded by the microcontroller s UART even when the clock is started by the serial start bit of the incoming data When the microcontroller has completed all pending activity it drives the STOP signal h...

Page 34: ...1 4 00988 45 3 D515 R301 R316 R402 R405 R407 4 01527 100K D508 3 00425 LEDRED R409 R410 R415 D514 3 00426 YELLOW R314 R401 R406 R408 R417 4 01503 10K J101 J102 J201 J202 1 00003 BNC R403 4 01479 1 0K...

Reviews: