background image

Application Hints

STV9302A

6/15

 

4.1.1.1 Centering 

Display will be centered (null mean current in yoke) when voltage on pin 7 is (R

1

 is negligible):

4.1.1.2 Peak Current

Example: for V

m

  = 2 V,  V

= 5 V and I

P

  = 1 A

Choose R

1

 in the1

 range, for instance R

1

=1

From equation of peak current: 

Then choose R

2

 or R

3

. For instance, if R

2

 = 10 k

, then R

= 15 k

Finally, the bias voltage on pin 7 should be: 

4.1.2

Ripple Rejection

When both ramp signal and bias are provided by the same driver IC, you can gain natural rejection 
of any ripple caused by a voltage drop in the ground (see 

Figure 5

), if you manage to apply the 

same fraction of ripple voltage to both booster inputs. For that purpose, arrange an intermediate 
point in the bias resistor bridge, such that (R

8

 / R

7

) = (R

3

 / R

2

), and connect the bias filtering 

capacitor between the intermediate point and the local driver ground. Of course, R

7

 should be 

connected to the booster reference point, which is the ground side of R

1

.

Figure 5: Ripple Rejection

V

7

V

M

V

m

+

2

------------------------

R

2

R

2

R

3

+

----------------------

ÿ

þ

×

=

I

P

V

M

V

m

(

)

2

-----------------------------

R

2

R

1

xR

3

-------------------

×

=

R

2

R

3

-------

2

I

P

R

1

×

×

V

M

V

m

-----------------------------

2
3

---

=

=

V

7

V

M

V

m

+

2

------------------------

1

1

R

3

R

2

-------

+

-----------------

×

7
2

---

1

2.5

--------

×

1.4V

=

=

=

R

3

R

2

R

1

Rd

Yoke

Ly

Power

Amplifier

Flyback

Generator

Thermal

Safety

0000000000000000

0000000000000000

7

3

2

5

6

1

4

+

-

0000000000000000

0000000000000000

R

7

R

8

R

9

000000

000000

000000

Reference
Voltage

Ramp
Signal

Driver
Ground

Source of Ripple

Summary of Contents for STV9302A

Page 1: ... to drive the vertical deflection yoke The internal flyback generator delivers flyback voltages up to 70 V in double supply applications a stand by state will be reached by stopping the supply alone HEPTAWATT Plastic Package ORDER CODE STV9302A 7 6 5 4 3 2 1 Tab connected Input Non Inverting Output Stage Supply Output Ground Or Negative Supply Flyback Generator Supply Voltage Input Inverting to pi...

Page 2: ...or 40 volts 2 Thermal Data Symbol Parameter Value Unit Voltage VS Supply Voltage pin 2 Note 1 and Note 2 40 V V5 V6 Flyback Peak Voltage Note 2 70 V V3 Voltage at Pin 3 Note 2 Note 3 and Note 6 0 4 to VS 3 V V1 V7 Amplifier Input Voltage Note 2 Note 6 and Note 7 0 4 to VS 2 or 40 V Current I0 1 Output Peak Current at f 50 to 200 Hz t 10µs Note 4 5 A I0 2 Output Peak Current non repetitive Note 5 2...

Page 3: ...Input I1 Input Bias Current V1 1 V V7 2 2 V 0 6 1 5 µA 1 I7 Input Bias Current V1 2 2 V V7 1 V 0 6 1 5 µA VIR Operating Input Voltage Range 0 VS 2 V VI0 Offset Voltage 2 mV VI0 dt Offset Drift versus Temperature 10 µV C Output I0 Operating Peak Output Current 1 A V5L Output Saturation Voltage to pin 4 I5 1 A 1 1 7 V 3 V5H Output Saturation Voltage to pin 6 I5 1 A 1 8 2 3 V 2 Stand by V5STBY Output...

Page 4: ... 2 Measurement of V5H Figure 3 Measurement of V3L and V5L 1V a 39kΩ 5 1 b I1 a I2 and I6 measurement b I1 measurement S Vs 2 6 I2 I6 4 7 2 2V STV9302A 5 6kΩ I5 5 1V 7 2 2V 1 4 Vs 2 6 V5H STV9302A Vs I3 or I5 3 5 V5L V3L a b a V5L measurement b V3L measurement STV9302A 1V 7 4 2 6 2 2V 1 ...

Page 5: ... 2 or higher the output will sink negligible current from the deviation coil 4 1 1 Application Hints For calculations treat the IC as an op amp where the feedback loop maintains V1 V7 Figure 4 DC coupled Application R3 Vs R2 R1 Rd Yoke Ly Vertical Position Adjustment VEE Vref recommended Ly 50µs Rd Ly 20µs 0 1µF 0 1µF CF 47 to 100µF Power Amplifier Flyback Generator Thermal Safety 470µF 470µF Outp...

Page 6: ...Figure 5 if you manage to apply the same fraction of ripple voltage to both booster inputs For that purpose arrange an intermediate point in the bias resistor bridge such that R8 R7 R3 R2 and connect the bias filtering capacitor between the intermediate point and the local driver ground Of course R7 should be connected to the booster reference point which is the ground side of R1 Figure 5 Ripple R...

Page 7: ...ng V7 must fulfill the following equation or Figure 6 AC coupled Application R3 Vs R2 R1 Rd Yoke Ly recommended Ly 50µs Rd Ly 20µs 0 1µF CF 47 to 100µF Power Amplifier Flyback Generator Thermal Safety 470µF Output Current Output Voltage Ip 000000000000000000 000000000000000000 000000000000000000 000000000000000000 000000000000000000 000000000000000000 7 3 2 5 6 1 4 VM Vm 000000000000000000 0000000...

Page 8: ...he peak peak differential signal 4ip The application is described in Figure 7 with DC yoke coupling The calculations still rely on the fact that V1 remains equal to V7 Figure 7 Using a Differential output Driver Vs R2 R1 Rd Yoke Ly VEE 0 22µF recommended Ly 50µs Rd Ly 20µs 0 1µF 0 1µF CF 47 to 100µF Power Amplifier Flyback Generator Thermal Safety 470µF 470µF Output Current Output Voltage Ip 00000...

Page 9: ...tial signal Also check that the voltages on the driver outputs remain inside allowed range Example for icm 0 4mA i 0 2mA corresponding to 0 8mA of peak peak differential current Ip 1A Choose R1 0 75Ω it follows R2 R7 1 875kΩ 4 3 3 Ripple Rejection Make sure to connect R7 directly to the ground side of R1 4 3 4 Secondary Breakdown Diagrams The diagram has been arbitrarily limited to max VS 35 V and...

Page 10: ...attached with a screw or a compression spring clip A layer of silicon grease inserted between heatsink and package optimizes thermal contact In DC coupled applications we recommend to use a silicone tape between the device tab and the heatsink to electrically isolate the tab Figure 9 Secondary Breakdown Temperature Derating Curve ISB Secondary Breakdown Current Figure 10 Mounting Examples ...

Page 11: ...11 15 STV9302A Pin Configuration 6 Pin Configuration Figure 11 Pins 1 and 7 Figure 12 Pin 3 Pins 5 and 6 1 7 2 3 2 6 5 4 2 ...

Page 12: ... 2 40 2 80 0 094 0 110 D1 1 20 1 35 0 047 0 053 E 0 35 0 55 0 014 0 022 E1 0 70 0 97 0 028 0 038 F 0 60 0 80 0 024 0 031 G 2 34 2 54 2 74 0 095 0 100 0 105 G1 4 88 5 08 5 28 0 193 0 200 0 205 G2 7 42 7 62 7 82 0 295 0 300 0 307 H2 10 40 0 409 H3 10 05 10 40 0 396 0 409 L 16 70 16 90 17 10 0 657 0 668 0 673 A L L1 C D1 L5 L2 L3 D E M1 M H3 Dia L7 L11 L10 L6 H2 F G G1 G2 E1 F E L9 V4 L4 H2 ...

Page 13: ...60 2 80 3 00 0 102 0 110 0 118 L6 15 10 15 50 15 80 0 594 0 610 0 622 L7 6 00 6 35 6 60 0 0236 0 250 0 260 L9 0 20 0 008 L10 2 10 2 70 0 082 0 106 L11 4 30 4 80 0 169 0 190 M 2 55 2 80 3 05 0 100 0 110 0 120 M1 4 83 5 08 5 33 0 190 0 200 0 210 V4 40 Typ Dia 3 65 3 85 0 144 0 152 Table 1 Heptawatt Package Continued Dim mm inches Min Typ Max Min Typ Max ...

Page 14: ...difications Version Date Description 2 0 January 2002 First Issue 2 1 November 2002 Addition of Stand by Control information Section 8 Revision History 2 2 April 2003 Correction to Section 4 1 1 2 Peak Current Creation of new title Section 4 3 4 Secondary Breakdown Diagrams ...

Page 15: ...s publication are subject to change without notice This publication supersedes and replaces all information previously supplied STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics The ST logo is a registered trademark of STMicroelectronics 2003 STMicroelectronics All Rights Reserved ...

Reviews: