background image

Si5321-EVB

Rev. 0.4

3

and a 0.1

F capacitor, such that the positive and

negative inputs of the differential pair each see a 50

termination to “ac ground,” and the line-to-line
termination impedance is 100

.

For single-ended operation, supply a signal to one of
the differential inputs (usually the positive input). The
other input should be shorted to ground using an SMA
shorting plug. The on-board termination circuit provides
a 50

 termination to ac-ground for each leg of the

differential pair.

Differential Clock Output Signals

The differential clock outputs from the Si5321 device
are routed to the perimeter of the circuit board using
50



transmission line structures. The capacitors that

provide ac-coupling are located near the clock output
SMA connectors.

Internal Regulator Compensation

The Si5321-EVB contains pad locations for a resistor
and a capacitor between the VDD25 node and ground.
The resistor pads are populated with a 0

 resistor. The

capacitor pads are populated with a low ESR 33

F

tantalum capacitor. This is the suggested compensation
circuit for Si5321 devices. 

There are two considerations for selecting this
combination of compensation resistor and capacitor.
First, is the stability of the regulator. The second is noise
filtering. 

The acceptable range for the time constant at this node
is 15

s to 50

s. The capacitor used on the board is a

33

F capacitor with an ESR of .8

. This yields a time

constant of 26.4

s. The designer could decide to use a

330

F capacitor with an ESR of .15

. This yields a

time constant of 49.5

s. Each of these cases provide a

compensation circuit that makes the output of the
regulator stable. 

The second issue is noise filtering. For this, more
capacitance is usually better. For the two cases
described above, the 330

F case provides greater

noise filtering. However, the large case size of the
330

F capacitor might make it impractical for many

applications. The Si5321 device is specified with the
33

F cap.

Default Jumper Settings

The default jumper settings for the Si5321-EVB board
are given in Table 1. These settings configure the board
for operation from a 3.3 V supply.

Table 1. Si5321-EVB Assembly Rev B-01 Default Jumper/Switch Settings

Location

Signal

State

Notes

JP6

VSEL33

1

Internal Regulator enabled

JP1

VDD33

Open

3.3 V plane not connected to 2.5 V plane

JP5

VALTIME

0

100 ms Validation Time

FEC[0]

0

No FEC scaling

FEC[1]

0

No FEC scaling

FEC[2]

0

No FEC scaling

BWSEL[0]

0

Loop Filter Bandwidth = 800 Hz

BWSEL[1]

1

Loop Filter Bandwidth = 800 Hz

INFRQSEL[0]

1

Clock IN = 19.44 MHz

INFRQSEL[1]

0

Clock IN = 19.44 MHz

INFRQSEL[2]

0

Clock IN = 19.44 MHz

FRQSEL[0]

1

Clock Out = 622.08 MHz

FRQSEL[1]

1

Clock Out = 622.08 MHz

FRQSEL[2]

0

Clock Out = 622.08 MHz

BWBOOST

1

Selected bandwidth not doubled

FXDDELAY

0

Fixed Delay disabled

JP7

LED ENABLE

On

LED Indicators enabled

Summary of Contents for Si5321-EVB

Page 1: ...erved for factory testing purposes Features Single supply at either 3 3 or 2 5 V jumper configurable Differential I Os ac coupled on board Differential inputs terminated on board Control input signals are switch configurable Status outputs brought out to headers for easy access Function Block Diagram t e x t t e x t Si5321 CLKIN CLKOUT Control Inputs Status Outputs Control Input Jumper Header Stat...

Page 2: ...and has an on chip pulldown mechanism This pin must be set high for normal operation of the Si5321 device Setting RSTN CAL low forces the Si5321 into the reset state A low to high transition of RSTN CAL enables the part and initiates a self calibration sequence The Si5321 device initiates self calibration at powerup if the RSTN CAL signal is held high A self calibration of the device also can be m...

Page 3: ...node is 15 s to 50 s The capacitor used on the board is a 33 F capacitor with an ESR of 8 This yields a time constant of 26 4 s The designer could decide to use a 330 F capacitor with an ESR of 15 This yields a time constant of 49 5 s Each of these cases provide a compensation circuit that makes the output of the regulator stable The second issue is noise filtering For this more capacitance is usu...

Page 4: ...V_ID 4 NC DEV_ID 5 NC DEV_ID 0 NC DEV_ID 1 NC DEV_ID 2 NC ANAOUT FXDDELAY FRQSEL 2 FEC 2 RES TMOD 0 RES TMOD 1 RES TMOD 2 BWBOOST GND GND GND GND GND GND GND GND GND GND GND GND GND GND CLKIN CLKIN INFRQSEL 0 INFRQSEL 1 INFRQSEL 2 FRQSEL 0 FRQSEL 1 FEC 0 FEC 1 BWSEL 0 BWSEL 1 VALTIME RSTN CAL VSEL33 REXT R9 4 99k 0603 D2 LN1274R R3 49 9 0603 JP6 HEADER 3x2 1 2 3 4 5 6 1 2 3 4 5 6 R8 4 99k 0402 C6 ...

Page 5: ...JP1 14x3 HEADER JP2 JP4 JP5 1x3 HEADER JP3 1x2 HEADER JP6 HEADER 3x2 JP7 5x3 JP8 7x2 Header J1 J2 J3 J4 SMA notch fit Johnson Components 82 SMA S50 0 45 J5 power connector 2 pin Phoenix Contact 140 A 111 02 1729018 L1 600 ohm 1206 MURATA BLM31A601S Q1 Q2 MOS SM FDN337N Fairchild FDN337N R1 0 0603 Venkel CR0603 16W 000T R3 R2 49 9 0603 Venkel CR0603 16W 49R9FT R4 R5 R10 0 0402 Venkel CR0402 16W 000...

Page 6: ...Si5321 EVB 6 Rev 0 4 Figure 2 Si5321 EVB Top Silkscreen ...

Page 7: ...Si5321 EVB Rev 0 4 7 Figure 3 Si5321 EVB Layer 1 Component Side ...

Page 8: ...Si5321 EVB 8 Rev 0 4 Figure 4 Si5321 EVB Layer 2 High Speed Signals ...

Page 9: ...Si5321 EVB Rev 0 4 9 Figure 5 Si5321 EVB Layer 3 GND ...

Page 10: ...Si5321 EVB 10 Rev 0 4 Figure 6 Si5321 EVB Layer 4 VDD 2 5 ...

Page 11: ...Si5321 EVB Rev 0 4 11 Figure 7 Si5321 EVB Layer 5 GND ...

Page 12: ...Si5321 EVB 12 Rev 0 4 Figure 8 Si5321 EVB Layer 6 VDD 3 3 ...

Page 13: ...Si5321 EVB Rev 0 4 13 Figure 9 Si5321 EVB Layer 7 GND ...

Page 14: ...Si5321 EVB 14 Rev 0 4 Figure 10 Si5321 EVB Layer 8 Bottom ...

Page 15: ...Si5321 EVB Rev 0 4 15 Figure 11 Si5321 EVB Bottom Silkscreen ...

Page 16: ... List Revision 0 1 to Revision 0 4 Updated to reflect Rev D printed circuit boards Default jumper settings added Evaluation Board Assembly Revision History Assembly Level PCB Rev Si5321 Rev Assembly Notes B 01 Rev C Rev B Assemble per BOM rev B 01 ...

Page 17: ...Si5321 EVB Rev 0 4 17 Notes ...

Page 18: ...th which if it fails can be reasonably expected to result in significant personal injury or death Silicon Laboratories products are generally not intended for military applications Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including but not limited to nuclear biological or chemical weapons or missiles capable of delivering such weapons Tradem...

Reviews: