Samsung M471B1G73AH0 Hardware User Manual Download Page 30

- 30 -

Unbuffered SODIMM

datasheet

DDR3 SDRAM

Rev. 1.0

16.2 Timing Parameter Notes

1. Actual value dependant upon measurement level definitions which are TBD.

2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"
8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing 

Diagram Datasheet.

12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated

       by TBD
13. Value is only valid for RON34
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
15. tREFI depends on T

OPER

16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,

      V

REF

(DC) = V

REF

DQ(DC). For input only pins except RESET, V

REF

(DC)=V

REF

CA(DC). 

      See "Address/Command Setup, Hold and Derating" on component datasheet.
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals, 

      V

REF

(DC)= V

REF

DQ(DC). For input only pins except RESET, V

REF

(DC)=V

REF

CA(DC).

      See "Data Setup, Hold and Slew Rate Derating" on component datasheet.
18. Start of internal write transaction is defined as follows ;

For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.

For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL

19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram 

Datasheet"

20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down 
      IDD spec will not be applied until finishing those operations.
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time 

      such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming 

the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The 
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.

     One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-

ject to in the application, is illustrated. The interval could be defined by the following formula:

where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.

For example, if TSens = 1.5% /

°

C, VSens = 0.15% / mV, Tdriftrate = 1

°

C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu-

lated as:

24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-

nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].

28. Pulse width of a input signal is defined as the width between the first crossing of V

REF

(DC) and the consecutive crossing of V

REF

(DC)

29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.

ZQCorrection

(TSens x Tdriftrate) + (VSens x Vdriftrate)

0.5

(1.5 x 1) + (0.15 x 15)

= 0.133 ~

~ 128ms

Summary of Contents for M471B1G73AH0

Page 1: ...ty to the other party under this document by implication estoppel or other wise Samsung products are not intended for use in life support critical care medical safety equipment or similar applications where product failure could result in loss of life or personal or physical harm or any military or defense application or any governmental procurement to which special terms or provisions may apply F...

Page 2: ... 2 Unbuffered SODIMM datasheet DDR3 SDRAM Rev 1 0 Revision History Revision No History Draft Date Remark Editor 1 0 First Release Jul 2010 S H Kim ...

Page 3: ... Swing Requirement for Clock CK CK and Strobe DQS DQS 12 10 3 3 Single ended Requirements for Differential Signals 13 10 3 4 Differential Input Cross Point Voltage 14 10 4 Slew Rate Definition for Single Ended Input Signals 14 10 5 Slew rate definition for Differential Input Signals 14 11 AC DC Output Measurement Levels 15 11 1 Single Ended AC and DC Output Levels 15 11 2 Differential AC and DC Ou...

Page 4: ...limit sequential with starting address 000 only 4 with tCCD 4 which does not allow seamless read or write either On the fly using A12 or MRS Bi directional Differential Data Strobe On Die Termination using ODT pin Average Refresh Period 7 8us at lower then TCASE 85 C 3 9us at 85 C TCASE 95 C Asynchronous Reset 3 Address Configuration Part Number2 Density Organization Component Composition Number o...

Page 5: ...2 158 DQ46 21 DQ8 22 DQ12 89 A8 90 A6 159 DQ43 160 DQ47 23 DQ9 24 DQ13 91 A5 92 A4 161 VSS 162 VSS 25 VSS 26 VSS 93 VDD 94 VDD 163 DQ48 164 DQ52 27 DQS1 28 DM1 95 A3 96 A2 165 DQ49 166 DQ53 29 DQS1 30 RESET 97 A1 98 A0 167 VSS 168 VSS 31 VSS 32 VSS 99 VDD 100 VDD 169 DQS6 170 DM6 33 DQ10 34 DQ14 101 CK0 102 CK1 171 DQS6 172 VSS 35 DQ11 36 DQ15 103 CK0 104 CK1 173 VSS 174 DQ54 37 VSS 38 VSS 105 VDD...

Page 6: ...trobe 1 DQS0 DQS7 Data strobes complement 8 CAS Column Address Strobe 1 RESET Reset Pin 1 WE Write Enable 1 TEST Logic Analyzer specific test pin No connect on SODIMM 1 S0 S1 Chip Selects 2 VDD Core and I O Power 18 A0 A9 A11 A13 A15 Address Inputs 14 VSS Ground 52 A10 AP Address Input Autoprecharge 1 VREFDQ VREFCA Input Output Reference 2 A12 BC Address Input Burst chop 1 VDDSPD SPD and Temp sens...

Page 7: ...d and BA0 BAn defines the bank to be precharged If AP is low autoprecharge is disabled During a Precharge command cycle AP is used in conjunction with BA0 BAn to control which bank s to precharge If AP is high all banks will be pre charged regardless of the state of BA0 BAn inputs If AP is low then BA0 BAn are used to define which bank to pre charge A12 BC is sampled during READ and WRITE commands...

Page 8: ...WE CK CK CKE ODT A N 0 BA N 0 ZQ DQ 0 7 DM 240Ω 1 DQ 0 7 D8 CS RAS CAS WE CK CK CKE ODT A N 0 BA N 0 ZQ 240Ω 1 DQS DQS DQ 0 7 DM DQS2 DQS2 DM2 DQS DQS D2 CS RAS CAS WE CK CK CKE ODT A N 0 BA N 0 ZQ DQ 0 7 DM 240Ω 1 DQ 16 23 D10 CS RAS CAS WE CK CK CKE ODT A N 0 BA N 0 ZQ 240Ω 1 DQS DQS DQ 0 7 DM DQS DQS D4 CS RAS CAS WE CK CK CKE ODT A N 0 BA N 0 ZQ DQ 0 7 DM 240Ω 1 D12 CS RAS CAS WE CK CK CKE ODT...

Page 9: ...under all operating conditions 3 Some applications require operation of the Extended Temperature Range between 85 C and 95 C case temperature Full specifications are guaranteed in this range but the following additional conditions apply a Refresh commands must be doubled in frequency therefore reducing the refresh interval tREFI to 3 9us It is also possible to specify a component with 1X refresh t...

Page 10: ... 2 15mV 5 VIH dc is used as a simplified symbol for VIH DQ DC100 6 VIL dc is used as a simplified symbol for VIL DQ DC100 7 VIH ac is used as a simplified symbol for VIH DQ AC175 VIH DQ AC150 VIH DQ AC175 value is used when VREF 175mV is referenced VIH DQ AC150 value is used when VREF 150mV is referenced 8 VIL ac is used as a simplified symbol for VIL DQ AC175 VIL DQ AC150 VIL DQ AC175 value is us...

Page 11: ... levels for setup and hold time measurements VIH AC VIH DC VIL AC and VIL DC are dependent on VREF VREF shall be understood as VREF DC as defined in Figure 1 This clarifies that dc variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured System timing and voltage budgets need to account for ...

Page 12: ...the respective limits VIH DC max VIL DC min for single ended sig nals as well as the limitations for overshoot and undershoot Refer to overshoot and Undershoot Specification Table 3 Allowed time before ringback tDVAC for CK CK and DQS DQS Symbol Parameter DDR3 800 1066 1333 1600 unit NOTE min max VIHdiff differential input high 0 2 NOTE 3 V 1 VILdiff differential input low NOTE 3 0 2 V 1 VIHdiff A...

Page 13: ...ingle ended signals through the ac levels is used to measure setup time For single ended components of differential signals the requirement to reach VSELmax VSEHmin has no bearing on timing but adds a restriction on the common mode characteristics of these signals Table 4 Single ended levels for CK DQS CK DQS NOTE 1 For CK CK use VIH VIL AC of ADD CMD for strobes DQS DQS use VIH VIL AC of DQs 2 VI...

Page 14: ...lew rate definitions for address and command signals See Data Setup Hold and Slew Rate Derating for single ended slew rate definitions for data signals 10 5 Slew rate definition for Differential Input Signals Input slew rate for differential signals CK CK and DQS DQS are defined and measured as shown in below Table 6 Differential input slew rate definition NOTE The differential signal i e CK CK an...

Page 15: ...ded output slew rate Description SR Slew Rate Q Query Output like in DQ which stands for Data in Query Output se Single ended Signals For Ron RZQ 7 setting Figure 6 Single ended output slew rate definition Symbol Parameter DDR3 800 1066 1333 1600 Units NOTE VOH DC DC output high measurement level for IV curve linearity 0 8 x VDDQ V VOM DC DC output mid measurement level for IV curve linearity 0 5 ...

Page 16: ...l Output slew rate Description SR Slew Rate Q Query Output like in DQ which stands for Data in Query Output diff Differential Signals For Ron RZQ 7 setting Figure 7 Differential output slew rate definition Description Measured Defined by From To Differential output slew rate for rising edge VOLdiff AC VOHdiff AC VOHdiff AC VOLdiff AC Delta TRdiff Differential output slew rate for falling edge VOHd...

Page 17: ...1 AL 0 CS stable at 1 Command Address Bank Address Inputs stable at 0 Data IO FLOATING DM stable at 0 Bank Activity all banks open Output Buffer and RTT Enabled in Mode Registers2 ODT Signal stable at 0 IDD4R Operating Burst Read Current CKE High External clock On tCK CL Refer to Component Datasheet for detail pattern BL 81 AL 0 CS High between RD Command Address Bank Address Inputs partially togg...

Page 18: ...4 Auto Self Refresh ASR set MR2 A6 0B to disable or 1B to enable feature 5 Self Refresh Temperature Range SRT set MR2 A7 0B for normal or 1B for extended temperature range 6 Refer to DRAM supplier data sheet and or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device 7 IDD current measure method and detail patterns are described on DDR3 component datasheet ...

Page 19: ...actived rank IDLE is IDD2N Symbol CF8 DDR3 1066 CL 7 CH9 DDR3 1333 CL 9 Unit NOTE IDD0 600 680 mA 1 IDD1 720 800 mA 1 IDD2P0 slow exit 240 240 mA IDD2P1 fast exit 320 320 mA IDD2N 400 480 mA IDD2Q 400 400 mA IDD3P 400 400 mA IDD3N 520 600 mA IDD4R 960 1120 mA 1 IDD4W 1040 1280 mA 1 IDD5B 1440 1600 mA 1 IDD6 240 240 mA IDD7 1520 1880 mA 1 IDD8 240 240 mA ...

Page 20: ...acitance 14 1 2Rx8 2GB SODIMM Parameter Symbol M471B1G73AH0 Units NOTE DDR3 1066 DDR3 1333 Min Max Min Max Input output capacitance DQ DM DQS DQS TDQS TDQS CIO TBD TBD pF Input capacitance CK and CK CCK TBD TBD pF Input capacitance All other input only pins CI TBD TBD pF ...

Page 21: ...o active refresh cmd time tRFC 110 160 300 350 ns Average periodic refresh interval tREFI 0 C TCASE 85 C 7 8 7 8 7 8 7 8 μs 85 C TCASE 95 C 3 9 3 9 3 9 3 9 μs 1 Speed DDR3 800 DDR3 1066 DDR3 1333 DDR3 1600 Units NOTE Bin CL tRCD tRP 6 6 6 7 7 7 9 9 9 11 11 11 Parameter min min min min CL 6 7 9 11 tCK tRCD 15 13 13 13 5 13 75 ns tRP 15 13 13 13 5 13 75 ns tRAS 37 5 37 5 36 35 ns tRC 52 5 50 63 49 5...

Page 22: ...ommand period tRP 13 125 ns ACT to ACT or REF command period tRC 50 625 ns ACT to PRE command period tRAS 37 5 9 tREFI ns CL 5 CWL 5 tCK AVG 3 0 3 3 ns 1 2 3 4 5 9 10 CWL 6 tCK AVG Reserved ns 4 CL 6 CWL 5 tCK AVG 2 5 3 3 ns 1 2 3 5 CWL 6 tCK AVG Reserved ns 1 2 3 4 CL 7 CWL 5 tCK AVG Reserved ns 4 CWL 6 tCK AVG 1 875 2 5 ns 1 2 3 4 8 CL 8 CWL 5 tCK AVG Reserved ns 4 CWL 6 tCK AVG 1 875 2 5 ns 1 2...

Page 23: ... 9 tREFI ns CL 5 CWL 5 tCK AVG 3 0 3 3 ns 1 2 3 4 6 9 10 CWL 6 7 tCK AVG Reserved ns 4 CL 6 CWL 5 tCK AVG 2 5 3 3 ns 1 2 3 6 CWL 6 tCK AVG Reserved ns 1 2 3 4 6 CWL 7 tCK AVG Reserved ns 4 CL 7 CWL 5 tCK AVG Reserved ns 4 CWL 6 tCK AVG 1 875 2 5 ns 1 2 3 4 6 CWL 7 tCK AVG Reserved ns 1 2 3 4 CL 8 CWL 5 tCK AVG Reserved ns 4 CWL 6 tCK AVG 1 875 2 5 ns 1 2 3 6 CWL 7 tCK AVG Reserved ns 1 2 3 4 CL 9 ...

Page 24: ... 2 5 3 3 ns 1 2 3 7 CWL 6 tCK AVG Reserved ns 1 2 3 4 7 CWL 7 8 tCK AVG Reserved ns 4 CL 7 CWL 5 tCK AVG Reserved ns 4 CWL 6 tCK AVG 1 875 2 5 ns 1 2 3 4 7 CWL 7 tCK AVG Reserved ns 1 2 3 4 7 CWL 8 tCK AVG Reserved ns 4 CL 8 CWL 5 tCK AVG Reserved ns 4 CWL 6 tCK AVG 1 875 2 5 ns 1 2 3 7 CWL 7 tCK AVG Reserved ns 1 2 3 4 7 CWL 8 tCK AVG Reserved ns 1 2 3 4 CL 9 CWL 5 6 tCK AVG Reserved ns 4 CWL 7 t...

Page 25: ...subject to Production Tests but verified by Design Characterization 6 Any DDR3 1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design Characterization 7 Any DDR3 1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests ...

Page 26: ... across n 13 14 49 50 cycles tERR nper tERR nper min 1 0 68ln n tJIT per min tERR nper max 1 0 68ln n tJIT per max ps 24 Absolute clock HIGH pulse width tCH abs 0 43 0 43 0 43 0 43 tCK avg 25 Absolute clock Low pulse width tCL abs 0 43 0 43 0 43 0 43 tCK avg 26 Data Timing DQS DQS to DQ skew per group per access tDQSQ 200 150 125 100 ps 13 DQ output hold time from DQS DQS tQH 0 38 0 38 0 38 0 38 t...

Page 27: ...page size tFAW 40 37 5 30 30 ns e Four activate window for 2KB page size tFAW 50 50 45 40 ns e Command and Address setup time to CK CK referenced to VIH AC VIL AC levels tIS base AC175 200 125 65 45 ps b 16 tIS base AC150 200 150 125 150 65 125 45 125 ps b 16 27 Command and Address hold time from CK CK refer enced to VIH AC VIL AC levels tIH base DC100 275 200 140 120 ps b 16 Control Address Input...

Page 28: ...CK 10 Timing of WR command to Power Down entry BC4MRS tWRPDEN WL 2 tWR tCK avg WL 2 tWR tCK avg WL 2 tWR tCK avg WL 2 tWR tCK avg nCK 9 Timing of WRA command to Power Down entry BC4MRS tWRAPDEN WL 2 WR 1 WL 2 WR 1 WL 2 WR 1 WL 2 WR 1 nCK 10 Timing of REF command to Power Down entry tREFPDEN 1 1 1 1 20 21 Timing of MRS command to Power Down entry tMRSPDEN tMOD min tMOD min tMOD min tMOD min ODT Tim...

Page 29: ...e the device will support tnRP RU tRP tCK avg which is in clock cycles if all input clock jitter specifications are met This means For DDR3 800 6 6 6 of which tRP 15ns the device will support tnRP RU tRP tCK avg 6 as long as the input clock jitter specifications are met i e Precharge com mand at Tm and Active command at Tm 6 is valid even if Tm 6 Tm is less than 15ns due to input clock jitter Spec...

Page 30: ...ose operations 21 Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN min is satisfied there are cases where additional time such as tXPDLL min is also required See Device Operation Timing Diagram Datasheet 22 Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function 23 One ZQCS command can effectively correct a minimum of 0 5 ZQCorrect...

Page 31: ...DDR3 SDRAM FBGA DDR3 SDRAM Part NO K4B4G0846A HC NOTE Tolerances on all dimensions 0 15 unless otherwise specified 0 25 MAX 2 55 Detail B Detail A 1 00 0 10 0 45 0 03 4 00 0 10 0 10 A B M C 2X 4 00 0 10 0 10 A B M C 2X 1 80 OPTIONAL HOLES 0 60 Units Millimeters 21 00 24 80 63 60 39 00 A B Max 3 8 1 00 0 10 SPD 1 65 6 30 00 0 15 20 00 67 60 0 10 A B M C ...

Reviews: