background image

 

7

 

5.2.3  Fault Signalling Facility

 

All faults on the cooling unit are registered and 
indicated by H1 as a fault number. The display is 
by means of the left-hand number. The display 
cycles through all pending fault messages in a 
2 second cycle, starting with the internal tempera-
ture of the enclosure.
H1 indicates the following faults as a fault number.
1 = Enclosure internal temperature too high

(5 K above setpoint value)

2 = Current monitor, condenser
3 = Evaporator (no collective fault indication).
4 = High-pressure monitor
5 = Current monitor, condenser fan
6 = Current monitor, evaporator fan
7 = Filter mat soiled
8 = Temperature sensor cable break/short-circuit

 

5.2.3.1  Fault Signal Contact

(K1, potential-free)

 

The fault signal relay is pulled in at normal condi-
tion. Any faults will cause the relay to drop out 
(except low-pressure monitor, fault number 3). 
Any failure of the control voltage will also lead to 
drop-out of the relay and can thus be registered. 
The connection is made on the terminal strip X10. 
For contact data and assignment, see wiring dia-
gram.

 

5.2.3.2  Filter Mat Monitoring

 

The specified filter mat has large pores and filters 
coarse dust and lint from the air. Oil condensate is 
partially separated out. Fine dust is drawn through 
the filter mat and the external circuit of the unit 
due to the high suction power of the fan. It does 
not have any damaging effect on the function of 
the unit.

Fig. 5.3  

 

Filter Mat Replacement

 

Function of the Filter Mat Monitor:
The filter mat is monitored for soiling by meas-
uring the temperature difference in the external 
circulation of the cooling unit. In the event of any 
filter mat soiling, the temperature difference will 
increase. The setpoint value of the temperature 
difference in the external circulation is adapted to 
various air conditioner operating conditions. This 
eliminates the need for subsequent adjustment of 
the setpoint value for different operating points of 
the unit. (For the setting of the filter mat replace-
ment see table 5.1 and fig. 5.1).

 

5.2.3.3 Door Limit Switch S 2 

(supplied by costumer)

 

Where a door limit switch is used and the enclo-
sure door is open (contact is closed when door is 
open), the cooling unit (fans and condenser) will 
switch off after approx. 10 s, thereby avoiding an 
increase in condensation while the door is open. 
To avoid cyclic operation, switch-on of condenser 
and external fan is delayed by about 3 minutes 
after the door has been closed. The internal fan 
will start up immediately on closure of the door. 
Connection is made at the terminal strip X10, ter-
minals 1 and 2. The extra low voltage is supplied 
by the internal power pack, current is approx. 
30 mA DC (no extra low safety voltage). Connect 
the door limit switch free from potential only, no 
external voltage! The display will flash during the 
door delay time. The system message “1010” is 
transmitted via the PLC interface.

 

5.2.3.4  PLC Interface X2 (Option)

 

The interface is used for the transmission of the 
actual internal temperature of the enclosure and 
any system messages of the cooling unit to the 
PLC. The transmitted information can be dis-
played by means of the output facilities (e.g. 
plain text display) which are connected to the 
PLC, or by means of the serial interface to a 
higher order computer.
Construction of the PLC interface:
The construction is potential separated via opto-
coupler (wiring diagram fig. 5.4). Connection is 
made by the customer to the 15-pin socket on the 
control board (fig. 5.4) to the PLC input card.

 

Attention!

 

The electrical signals at the interface are of an 
extra-low voltage (not extra-low safety voltages 
according to EN 60 335).

Fig. 5.4  

 

PLC Interface

 

Max. loading of the outputs:
30 V/10 mA, direct current
Connection: screened 15-core control cable
The possibility exists to access this information 
over the PLC interface (level 8, table 5.1 or 
fig. 5.1).

a) Standard mode (Level 8 = “0”)
Communication of the enclosure internal tempera-
ture and of the fault messages is made succes-
sively in 2 s cycle. Since this is an 8-bit parallel 
transmission, input signals should not be accept-
ed as valid in the PLC until they have been pres-
ent for 0.5 s. This ensures that no invalid input in-
formation will be evaluated in the event of signal 
changes at the inputs.

Fig. 5.5

 

PLC Interface X2
Pulse/time diagram (example)

9

1

E x.0

2

E x.1

e.g.
+ 24 V

3

E x.2

4

E x.3

5

E x.4

6

E x.5

7

E x.6

8

E x.7

PLC input card

Customer’s supply

15-pin. Sub-D

Cooling unit control card

2 sec.

2

7

6

5

4

3

2

1

0

8

7

6

5

4

3

2

1

0.5

2

0.5

2

0.5

2

0.5

X2

Sub-D plug

Pin

Temperature

32 °C  33 °C

5  Fault  6

store  cancel

Temperature

34 °C

Bit

 

Enclosure internal temperature:
Transmission with 2 digits in BCD format:

System messages:
The system messages are transferred by means 
of identification (4 bit) and a fault number
(1 digit BCD). The identification is structured as 
follows:

In the event of a fault XXXX (BCD), the identifica-
tion is transmitted cyclically. This information 
can be used to store the fault message in the 
PLC.

This identification is transferred once, as soon 
as the fault with the number XXXX/BCD has 
been rectified. This information can be used to 
delete the fault message in the PLC.

Evaluation of the interface signals in the PLC:
Messages:
If bit 1 and bit 3 of the input byte have a 1 signal, 
the transmitted information is a system mes-
sage. In this case, the meaning of bit 0 is either 
the information “store fault message” (bit 0 = 0) 
or “cancel fault message” (bit 0 = 1).
Bit 4 to 7 represent the appropriate message 
number (BCD).

Temperature:
If the AND operation of bit 1 and bit 3 is not fulfil-
led, the input information represents the actual 
internal temperature of the enclosure. In this 
case, both BCD digits have valid values (< = 9).

b) Parallel fault codes (Level 8 = “1”).
This can be accessed as follows:
Every one of the eight outputs stands for a cer-
tain system message (see below). It is not pos-
sible to display the internal temperature at the 
same time as the system messages.

 

Output/

System Message

Bit

 

0

Max. enclosure internal temperature

1

Filter mat soiled

2

Enclosure door is open

3

High-pressure monitor

4

Evaporator

5

Current monitor, compressor

6

Current monitor, internal fan

7

Current monitor, external fan

Because these fault codes are transmitted 
through an optocoupler, they can be switched to 
a parallel transmission.

Bit 7

ZZZZ

EEEE

Units
Tens

0

Fault number
1 to 8
(see list)

Bit 7

XXXX

1010

Identification

0

“Store fault
message”

Fault number
1 to 8
(see list)

Bit 7

XXXX

1011

Identification

0

“Store fault
message”

Summary of Contents for SK 3260.140

Page 1: ...ld volgens de op het type plaatje aangegeven nominale stroom VARNING Montering av apparatskåpskylaggregat Vid montering måste beaktas att varmluftsintag och kalluftsutblås inte är spärrade En fri luftcirkulation inuti skåpet måste garanteras Utrymmet mellan luftintag utblåsöppningar och installationerna måste vara 200 mm Efter att kylaggregatet stängts av kan det startas först efter 5 minuter Anvä...

Page 2: ...ld volgens de op het type plaatje aangegeven nominale stroom VARNING Montering av apparatskåpskylaggregat Vid montering måste beaktas att varmluftsintag och kalluftsutblås inte är spärrade En fri luftcirkulation inuti skåpet måste garanteras Utrymmet mellan luftintag utblåsöppningar och installationerna måste vara 200 mm Efter att kylaggregatet stängts av kan det startas först efter 5 minuter Anvä...

Page 3: ...1 A 4 6 A 5 8 A 4 A 4 A 100 470 W 520 W 520 W 605 W 825 W 960 W 680 W 720 W R134 a 525 g 25 bar 20 55 C 62 dB A IP 54 IP 34 400 x 950 x 230 38 kg RAL 7032 SK 3281 100 115 V 50 60 Hz 6 5 A 7 6 A 16 4 A 20 1 A 10 A 10 A 100 470 W 520 W 520 W 605 W 825 W 960 W 680 W 720 W R134 a 525 g 25 bar 20 55 C 62 dB A IP 54 IP 34 400 x 950 x 230 38 kg RAL 7032 SK 3393 100 SK 3393 500 230 V 50 60 Hz 4 2 A 4 4 A ...

Page 4: ...g the protective earth conductor high voltage and the insulation in the enclosure 5 Commencing Operation and Control Behaviour Following the completion of mounting and a waiting period of approximately 30 minutes to allow oil to collect in the compressor in order to ensure lubrication and cooling electrical connec tion can be made 5 1 Control by Thermostat Version 100 140 The cooling unit operates...

Page 5: ... e g plain text display which are connected to the PLC or by means of the serial interface to a higher order computer Construction of the PLC interface The construction is potential separated via opto coupler wiring diagram fig 5 4 Connection is made by the customer to the 15 pin socket on the control board fig 5 4 to the PLC input card Attention The electrical signals at the interface are of an e...

Page 6: ... lines are short 6 3 Programming the Cooling Unit See diagram 5 1 for details on programming IDs NOTE Only one unit may be configured as master the address ID must match the number of slave units The individual slave units must have different addresses the addresses must be in ascending order without gaps in between Example 1 master cooling unit with 2 slave cooling units Master cooling unit Slave...

Page 7: ...enclosure temperature Ti 30 45 35 The standard thermostat setting range is 35 45 C The upper and lower limits can be adjusted through programm level 5 and 6 2 Set value of filter mat monitor 4 40 99 off 99 Factory setting is the shut off value 99 To activate 1 Install clean filter mat and let air conditioner cool for a few minutes 2 Select programm level 2 see diagram 5 1 page 39 3 Push test butto...

Page 8: ...n S2 Door limit switch without door operated switch terminal 1 2 open T1 Transformer Electrical Connection by Customer X2 PLC interface Sub D socket 15 pole X10 Terminal strip X10 L1 L2 N PE Mains connection brown L1 phase blue L2 N neutral green yellow PE ground L1 L2 L3 SK 3260 500 X10 1 2 Door operated switch connection supplied by customer X10 3 4 5 Collective fault message Anslutningsschema m...

Page 9: ...ormer see type plate Techn data Kontaktdaten K1 Contact Data K1 Caracteristiques des contacts K1 Kontaktgegevens K1 Kontaktdata K1 Caratteristiche dei contatti K1 Características del contacto K1 AC cosf 1 DC L R 40 ms I max 5 A U max 230 V I min 10 mA U max 100 V I max 200 mA U max 20 V I max 5 A K 1 35 Wirkschaltplan Detailed Wiring Diagram Schéma des con nexions détaillé Werkingsschema Driftsche...

Page 10: ... Lamellengitter 2 Louvred grille 2 Grille à lamelles 2 Rooster 2 Lamellgitter 2 Griglia a lamelle 2 Rejilla 2 46 Lamellengitter 1 Louvred grille 1 Grille à lamelles 1 Rooster 1 Lamellgitter 1 Griglia a lamelle 1 Rejilla 1 50 Abdeckblende Infill panel Couvercle Afdekplaat Täckplåt Copertura cieca Pantalla cubierta 55 Anzeigeplatine Display PCB Platine d indication Displayprint Displaykort Scheda di...

Page 11: ... 55 75 5 71 25 1 30 20 15 35 40 85 80 10 71 SK 3293 XXX 3281 100 3393 XXX 3381 100 SK 3298 100 3298 500 3279 100 3260 XXX 71 25 1 30 15 20 35 40 85 5 45 45 46 50 65 66 55 75 10 71 100 80 100 90 90 70 2 2 70 71 71 48 48 ...

Page 12: ... 25 35 45 55 Kennlinienfeld DIN 3168 Performance Diagram Diagramme des lignes caracteristiques Karakteristik kurva Diagramma delle curve caratteristiche Diagrama de potencia Verflüssigereintritt C Liquifier entry Entrée du condenseur Kondensorinlaat Kondensoringång Ingresso condensatore Entrada del condensador Tu Verdampfereintritt C Evaporator entry Entrée de l évaporateur Verdamperinlaat Förånga...

Page 13: ...i 30 45 C Standard 35 C TFilter 4 40 K Standard off 99 0 1 099 004 040 045 036 035 32 9 8 7 6 5 4 3 2 1 10s ENTER ENTER 0 1 ENTER ENTER ENTER ENTER 000 001 123 ENTER ENTER 0 1 ENTER ENTER 030 020 025 ENTER ENTER 045 046 055 ENTER ENTER 005 006 015 ENTER 101 ENTER 00 ENTER 50 01 16 ENTER Diagramm 5 1 Programmierung Diagram 5 1 Programming Diagramme 5 1 Programmation Diagram 5 1 Programmering Diagra...

Reviews: