background image

2

Vibration to IEC 68-2-6

: Operational 5 to 150 Hz, 2 g.

Shock to IEC 68-2-27

: Operational 30 g.

Altitude

: Up to 2000 meters

8. 

CERTIFICATIONS AND COMPLIANCES

:

SAFETY

UL Recognized Component, File #E179259

Recognized to U.S. and Canadian requirements under the Component 

Recognition Program of Underwriters Laboratories, Inc.

IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment 

for measurement, control, and laboratory use, Part 1.

ELECTROMAGNETIC COMPATIBILITY
Immunity to EN 50082-2

Electrostatic discharge

EN 61000-4-2 Level 2; 4 Kv contact

1

Level 3; 8 Kv air

1

Electromagnetic RF fields

EN 61000-4-3 Level 3; 10 V/m

80 MHz - 1 GHz

Fast transients (burst)

EN 61000-4-4 Level 4; 2 Kv I/O

Level 3; 2 Kv power

RF conducted interference

EN 61000-4-6 Level 3; 10 V/rms

150 KHz - 80 MHz

Emissions to EN 50081-1

RF interference

EN 55022 Enclosure class B

Power mains class B

Note: 

1. This device was designed for installation in an enclosure. To avoid 

electrostatic discharge to the unit in environments with static levels above 

4 Kv, precautions should be taken when the device is mounted outside an 

enclosure. When working in an enclosure, (ex. making adjustments, setting 

switches etc.) typical anti-static precautions should be observed before 

touching the unit. 

Refer to EMC Installation Guidelines for additional information.

9. 

CONSTRUCTION

: Case body is black, high impact plastic. Installation 

Category I, Pollution Degree 2.

10. 

MOUNTING

: Standard DIN rail top hat (T) profile rail according to 

EN50022- 35 X 7.5 and 35 X 15

11. 

WEIGHT

: 3.3 oz. (93.6 g)

8

5

4.7K

RXB
COMMON

6
5

2

4

6

7

3

2

9 PIN "D"

CONNECTOR

1

POWER IN

RS232

SWITCHES

BAUD RATE

RD

DTE/DCE

SWITCHES

TD

RS485

CONTROL

TX

RX

4 WIRE

2 WIRE/

4.7K

+5V

TXA

4

RXA

TXB

TERMINATION

120 

7

3

+VDC

COMM

TX/RX

TX/RX

DTR

DSR

RTS

CTS

COMM

BLOCK DIAGRAM

EMC INSTALLATION GUIDELINES

Although Red Lion Controls Products are designed with a high degree of 

immunity to Electromagnetic Interference (EMI), proper installation and wiring 

methods must be followed to ensure compatibility in each application. The type 

of the electrical noise, source or coupling method into a unit may be different 

for various installations. Cable length, routing, and shield termination are very 

important and can mean the difference between a successful or troublesome 

installation. Listed are some EMI guidelines for a successful installation in an 

industrial environment.

1. A unit should be mounted in a metal enclosure, which is properly connected 

to protective earth.

2. Use shielded cables for all Signal and Control inputs. The shield connection 

should be made as short as possible. The connection point for the shield 

depends somewhat upon the application. Listed below are the recommended 

methods of connecting the shield, in order of their effectiveness.

a. Connect the shield to earth ground (protective earth) at one end where the 

unit is mounted.

b. Connect the shield to earth ground at both ends of the cable, usually when 

the noise source frequency is over 1 MHz.

3. Never run Signal or Control cables in the same conduit or raceway with AC 

power lines, conductors, feeding motors, solenoids, SCR controls, and 

heaters, etc. The cables should be run through metal conduit that is properly 

grounded. This is especially useful in applications where cable runs are long 

and portable two-way radios are used in close proximity or if the installation 

is near a commercial radio transmitter. Also, Signal or Control cables within 

an enclosure should be routed as far away as possible from contactors, control 

relays, transformers, and other noisy components. 

4. Long cable runs are more susceptible to EMI pickup than short cable runs.

5. In extremely high EMI environments, the use of external EMI suppression 

devices such as Ferrite Suppression Cores for signal and control cables is 

effective. The following EMI suppression devices (or equivalent) are 

recommended:

Fair-Rite part number 0443167251 (RLC part number FCOR0000)

Line Filters for input power cables:

Schaffner # FN2010-1/07 (Red Lion Controls # LFIL0000)

6. To protect relay contacts that control inductive loads and to minimize radiated 

and conducted noise (EMI), some type of contact protection network is 

normally installed across the load, the contacts or both. The most effective 

location is across the load.

a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide 

varistor (MOV) across an AC inductive load is very effective at reducing 

EMI and increasing relay contact life.

b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor 

switch, care must be taken not to exceed the breakdown voltage of the 

transistor when the load is switched. One of the most effective ways is to 

place a diode across the inductive load. Most RLC products with solid state 

outputs have internal zener diode protection. However external diode 

protection at the load is always a good design practice to limit EMI. 

Although the use of a snubber or varistor could be used.

RLC part numbers: Snubber: SNUB0000

   

Varistor: ILS11500 or ILS23000

7. Care should be taken when connecting input and output devices to the 

instrument. When a separate input and output common is provided, they 

should not be mixed. Therefore a sensor common should NOT be connected 

to an output common. This would cause EMI on the sensitive input common, 

which could affect the instrument’s operation.
Visit RLC’s web site at http://www.redlion.net/Support/InstallationConsiderations.

html for more information on EMI guidelines, Safety and CE issues as they 

relate to Red Lion Controls products.

Summary of Contents for ICM5

Page 1: ...m 85 mA typical Power Supply must be Class 2 or SELV rated 2 RS 232 VOLTAGES Receive Data Pin 30 VDC max Mark Condition 0 8 VDC Space Condition 2 4 VDC Transmit Data Pin Mark Condition 8 VDC typ Space Condition 8 VDC typ 3 RS 485 VOLTAGES Differential Output Voltage 5 VDC max under no load Differential Input Voltage 5 VDC max Mark Condition 0 2 VDC Space Condition 0 2 VDC RS 485 Drive Capability U...

Page 2: ...cation Listed below are the recommended methods of connecting the shield in order of their effectiveness a Connect the shield to earth ground protective earth at one end where the unit is mounted b Connect the shield to earth ground at both ends of the cable usually when the noise source frequency is over 1 MHz 3 Never run Signal or Control cables in the same conduit or raceway with AC power lines...

Page 3: ...ed back This allows 2 wire half duplex operation without the use of handshake lines Both switches should be in the same position Switch 3 N C No Connection Switches 4 7 OFF DCE ON DTE These switches configure the RS 232 port to act as a DCE or DTE device With all of the switches in the DCE position pin 2 of the DB 9 connector is the RS 232 receiver and pin 3 is the RS 232 transmitter DTE configure...

Page 4: ...dule until it releases from the rail TYPICAL RS 485 CONNECTIONS USING RJ 11 1 W RJ11 PRODUCT RED LION 4 7 10 115200 BAUD 57600 BAUD PULL DOWN 19200 BAUD 9600 BAUD 38400 BAUD OFF 4 WIRE ON 2 WIRE OFF 4 WIRE ON 2 WIRE 120Ω TERMINATION ON 2 1 3 10 8 9 6 4 5 7 PULL UP CABLE RS232 ICM5 OFF DTE ON DCE OFF DTE ON DCE OFF DCE ON DTE OFF DCE ON DTE OFF 422 ON 485 OFF 422 ON 485 7 6 4 3 NC 2 5 1 ON RJ 11 JU...

Reviews: