background image

Philips Semiconductors Linear Products

Product specification

µ

A747C

Dual operational amplifier

August 31, 1994

57

TYPICAL PERFORMANCE CHARACTERISTICS

 (Continued)

Power Consumption as a Function

of Ambient Temperature

Output Short–Circuit Current

as a Function of

Ambient Temperature

RELA

TIVE V

ALUE

Frequency Characteristics as a

Function of Ambient Temperature

1.4

1.2

1.0

0.8

0.6

TRANSIENT RESPONSE

–60

–20

20

80

100

140

TEMPERATURE — 

o

C

VS = + 15V

CLOSED LOOP

BANDWIDTH

SLEW RATE

POWER CONSUMPTION — mW

TA = 25

o

C

100

80

60

40

20

0

5

10

15

20

TA = 25

o

C

SUPPLY VOLTAGE — +V

Power Consumption as a

Function of Supply Voltage

INPUT BIAS CURRENT — nA

VS = +15V

500

400

300

200

100

0

–60

–20

20

60

100

140

TEMPERATURE — 

o

C

Input Bias Current as a Function

of Ambient Temperature

INPUT RESIST

ANCE — M

10.0

5.0

3.0

1.0

0.5

0.3

0.1

–60

–20

20

60

100

140

TEMPERATURE — 

o

C

Input Resistance as a Function

of Ambient Temperature

VS = + 15V

40

30

20

10

0

5

10

15

20

SUPPLY VOLTAGE —

 

+V

INPUT OFFSET CURRENT — nA

TA = 25

o

C

Input Offset Current as a

Function of Supply Voltage

140

120

100

80

60

40

20

0

–60

–20

20

60

100

140

TEMPERATURE

 — 

o

C

INPUT OFFSET CURRENT — nA

VS = + 15V

Input Offset Current as a Function

of Ambient Temperature

70

60

50

40

30

–60

–20

20

60

100

140

TEMPERATURE

 — 

o

C

POWER CONSUMPTION — mW

VS = + 15V

PEAK–T

O–PEAK OUTPUT SWING — V

VS = +15V
TA = 25

o

C

28

26

24

22

20

18

16

14

12

10

8

0.1

0.2

0.5 1.0

2.0

5.0

10

LOAD RESISTANCE — k

Output Voltage Swing as a

Function of Load Resistance

SHORT CIRCUIT CURRENT — mA

35

30

25

20

15

10

–60

–20

20

60

100

140

TEMPERATURE — 

o

C

Summary of Contents for UA747C

Page 1: ...op applications For single amplifier performance see µA741 data sheet FEATURES No frequency compensation required Short circuit protection Offset voltage null capability Large common mode and differential voltage ranges Low power consumption No latch up PIN CONFIGURATION B A INVERTING INPUT B NON INVERTING INPUT B OFFSET NULL B V OFFSET NULL A NON INVERTING INPUT A INV INPUT A OFFSET NULL B V B OU...

Page 2: ...ERISTICS TA 25 C VCC 15V unless otherwise specified SYMBOL PARAMETER TEST CONDITIONS µA747C UNIT SYMBOL PARAMETER TEST CONDITIONS Min Typ Max UNIT VOS Offset voltage RS 10kΩ 2 0 6 0 mV RS 10kΩ over temp 3 0 7 5 mV VOS T 10 µV C IOS Offset current 20 200 nA Over temperature 7 0 300 nA IOS T 200 pA C IBIAS Input current 80 500 nA Over temperature 30 800 nA IB T 1 nA C VOUT Output voltage swing RL 2k...

Page 3: ...25oC 0 45 90 135 180 FREQUENCY Hz Open Looped Voltage Response as a Function of Frequency PEAK TO PEAK OUTPUT SWING V 40 36 32 28 24 20 16 12 8 4 0 100 1k 10k 100k 1M FREQUENCY Hz VS 15V TA 25oC RL 10kΩ Output Voltage Swing as a Function of Frequency 115 110 105 100 95 90 85 80 0 4 8 12 15 20 SUPPLY VOLTAGE V VOLTAGE GAIN dB TA 25OC Open Loop Voltage Gain as a Function of Supply Voltage PEAK TO PE...

Page 4: ... 100 0 60 20 20 60 100 140 TEMPERATURE oC Input Bias Current as a Function of Ambient Temperature INPUT RESISTANCE MΩ 10 0 5 0 3 0 1 0 0 5 0 3 0 1 60 20 20 60 100 140 TEMPERATURE oC Input Resistance as a Function of Ambient Temperature VS 15V 40 30 20 10 0 5 10 15 20 SUPPLY VOLTAGE V INPUT OFFSET CURRENT nA TA 25oC Input Offset Current as a Function of Supply Voltage 140 120 100 80 60 40 20 0 60 2...

Page 5: ...E V Hz 2 MEAN SQUARE NOISE CURRENT 10 21 10 22 10 23 10 24 10 25 10 26 10 100 1K 10K 100K FREQUENCY Hz Broadband Noise for Various Bandwidths TOTAL NOISE REFERRED TO INPUT Vrms µ 10 1kHz 100 10 1 0 1 100 1K 10K 100K 10 100kHz 10 10kHz SOURCE RESISTANCE Ω VS 15V TA 25oC Input Noise Current as a Function of Frequency Input Noise Voltage as a Function of Frequency VS 15V TA 25oC TEST CIRCUITS µA747C ...

Reviews: