Philips SA5223 Datasheet Download Page 3

Philips Semiconductors

Product specification

SA5223

Wide dynamic range AGC transimpedance amplifier(150MHz)

1995 Oct 24

3

DC ELECTRICAL CHARACTERISTICS

Typical data and Min and Max limits apply at T

A

 = 25

°

C, and V

CC

 = +5V, unless otherwise specified.

SYMBOL

PARAMETER

TEST CONDITIONS

SA5223

UNIT

SYMBOL

PARAMETER

TEST CONDITIONS

Min

Typ

Max

UNIT

V

IN

Input bias voltage

1.3

1.55

1.8

V

V

O

±

Output bias voltage

2.9

3.2

3.5

V

V

OS

Output offset voltage (V

PIN6

 - V

PIN7

)

-200

80

+200

mV

I

CC

Supply current

15

22

29

mA

I

OMAX

Output sink/source current

1.5

2

mA

NOTE:  Standard deviations are estimated from design simulations to represent manufacturing variations over the life of the product.

AC ELECTRICAL CHARACTERISTICS

Typical data and Min and Max limits apply at T

A

 = 25

°

C and V

CC

 = +5V, unless otherwise specified.

SYMBOL

PARAMETER

TEST CONDITIONS

SA5223

UNIT

SYMBOL

PARAMETER

TEST CONDITIONS

Min

Typ

Max

UNIT

R

T

Transresistance (differential output)

DC tested, R

L

 = 

, I

IN

 = 0-1

µ

A

90

125

160

k

R

T

Transresistance
(single-ended output)

DC tested, R

L

 = 

, I

IN

 = 0-1

µ

A

45

62.5

80

k

R

O

Output resistance
(differential output)

DC tested

140

R

O

Output resistance
(single-ended output)

DC tested

70

f

3dB

Bandwidth (-3dB)

Test Circuit 1

110

150

MHz

R

IN

Input resistance

DC tested

250

C

IN

Input capacitance

1

0.7

pF

C

INT

Input capacitance including Miller multiplied
capacitance

4.0

pF

R/

V

Transresistance power supply sensitivity

V

CC1

 = V

CC2

 = 5 

±

0.5V

3

%/V

R/

T

Transresistance ambient temperature sensi-
tivity

T

A

 = T

A MAX

 - T

A MIN

0.09

%/

o

C

I

IN

RMS noise current spectral density (referred
to input)

2

Test Circuit 2, f = 10MHz

1.17

pA

ń

Hz

Ǹ

Integrated RMS noise current over the band-

idth (referred to inp t)

Test circuit 2,

f = 50MHz

7

width (referred to input)
C

S

= 0.1pF

f = 100MHz

12

I

T

C

S

 = 0.1 F

f = 150MHz

16

nA

T

f = 50MHz

8

C

S

 = 0.4pF

f = 100MHz

13

f = 150MHz

18

PSRR

Power supply rejection ratio (change in V

OS

)

DC Tested, 

V

CC

 = 

±

0.5V

–55

dB

PSRR

Power supply rejection ratio

3

f = 1.0MHz, Test Circuit 3

–20

dB

V

OLMAX

Maximum differential output AC voltage

I

i

 = 0–2mA peak AC

800

mV

dR

T

dt

AGC loop time constant parameter

4

10

µ

A to 20

µ

A steps

1

dB/ms

I

INMAX

Maximum input amplitude for output duty
cycle of 50 

±

5%

Test circuit 4

+2

mA

t

r

, t

f

Output rise and fall times

10 – 90%

2.2

ns

t

D

Group delay

f = 10MHz

2.2

ns

NOTES:
1. Does not include Miller-multiplied capacitance of input device.
2. Noise performance measured differential.  Single-ended output noise is higher due to CM noise.
3. PSRR is output referenced and is circuit board layout dependent at higher frequencies.  For best performance use a RF filter in V

CC

 line.

4. This implies that the SA5223 gain will change 1dB (10%) in the absence of data for 1ms (i.e., can handle bursty data without degrading Bit

Error Rate (BER) for 100,000 cycles at 100MHz).

Summary of Contents for SA5223

Page 1: ...Philips Semiconductors SA5223 Wide dynamic range AGC transimpedance amplifier 150MHz Product specification 1995 Oct 24 INTEGRATED CIRCUITS IC19 Data Handbook ...

Page 2: ...ut overload 4mA 2000V HBM ESD protection PIN DESCRIPTION D Package IN GND2 OUT VCC 1 2 3 4 8 7 6 5 OUT GND4 GND3 GND1 SD00369 APPLICATIONS OC3 SONET preamp see AN1431 for detailed analysis Current to voltage converters Wide band gain block Medical and scientific instrumentation Sensor preamplifiers Single ended to differential conversion Low noise RF amplifiers RF signal processing ORDERING INFORM...

Page 3: ...citance1 0 7 pF CINT Input capacitance including Miller multiplied capacitance 4 0 pF R V Transresistance power supply sensitivity VCC1 VCC2 5 0 5V 3 V R T Transresistance ambient temperature sensi tivity TA TA MAX TA MIN 0 09 oC IIN RMS noise current spectral density referred to input 2 Test Circuit 2 f 10MHz 1 17 pAń Hz Ǹ Integrated RMS noise current over the band idth referred to inp t Test cir...

Page 4: ... 500 500 Test Circuit 2 Noise SPECTRUM ANALYZER VCC OUT OUT IN DUT GND2 GND1 NE5209 50Ω 1µF 1µF 1 0µF 1 0µF CS 50Ω SD00371 NETWORK ANALYZER S PARAMETER TEST SET PORT1 PORT2 VCC 1uF 1uF OUT OUT IN DUT GND2 GND1 50Ω CAL UNBAL 0 1uF NC 50Ω BIAS TEE 5V NHO300HB TRANSFORMER CONVERSION LOSS 9dB 100Ω BAL SD00372 Test Circuit 3 PSRR Test Circuit 4 Duty Cycle Distortion PULSE GEN OUT OUT DUT OSCILLOSCOPE A...

Page 5: ...kaged device All die are 100 functional with various parametrics tested at the wafer level at room temperature only 25 C and are guaranteed to be 100 functional as a result of electrical testing to the point of wafer sawing only Although the most modern processes are utilized for wafer sawing and die pick and place into waffle pack carriers it is impossible to guarantee 100 functionality through t...

Page 6: ...3 D1 1A358 1300nm ABB HAFO 1 5GHz PIN DIODE ANALOG GND DIGITAL GND Ω λ Ω R3 120Ω R4 120Ω C4 4 7pF C6 0 1uF C8 0 1uF C9 0 1uF 5V C10 4 7uF 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 U2 NE5224 L2 10uH C5 0 1uF C8 0 1uF CAZN CAZP GNDA D_IN D_IN VccA CF JAM VSET VREF VccE D_OUT D_OUT GND_E ST ST 5V R6 130 R7 82 C11 0 1uF 3 2V R5 5 R10 130 DOUT DOUT R9 82 C12 0 1uF 5V R8 5 R11 3k R12 1 8k C13 0 1uF Ω Ω Ω Ω...

Page 7: ...nsimpedance amplifier 150MHz 1995 Oct 24 7 TOP VIEW BOTTOM VIEW D1 U1 5V GND GND C2 R1 C1 R2 C3 SA5223 5224 SONET 155MB s FO11000 L1 GND GND 5V U2 C10 Dout Dout R12 C12 R6 R7 R8 R10 R9 R5 C11 C13 R11 C8 C9 L2 C4 C6 C7 C5 R3 R4 SD00522 Figure 3 SA5223 Board Layout NOT ACTUAL SIZE ...

Page 8: ...00 2 600 BIAS VCC 5 5V VCC 5 0V VCC 4 5V SD00529 Figure 6 SA5223 Output VBIAS vs Temperature 100 50 25 0 25 50 75 100 TEMPERATURE C V mV VCC 5 5V VCC 5 0V VCC 4 5V 90 80 70 60 50 40 OS VOS IIN 0 VOUT VOUT RL INFINITY SD00530 Figure 7 SA5223 Output VOS vs Temperature 3 500 0 1 2 3 4 5 6 DC INPUT CURRENT µA V V VOUT VOUT OUT 3 400 3 300 3 200 3 100 3 000 2 900 7 8 9 10 RL INFINITY VCC 5 0V Temperatu...

Page 9: ...100 80 60 40 20 0 7 8 9 10 25 C 40 C Ω RL INFINITY SD00535 RT VOD IIN VCC 5 0V Temperature 40 25 85 C Figure 12 SA5223 Differential RT vs DC IIN for small input current 1000 1 10 100 1000 10000 100 10 1 0 DC INPUT CURRENT µA LOG 25 C RL INFINITY RT K LOG Ω SD00536 RT VOD IIN VCC 5 0V Temperature 40 25 85 C 85 C 40 C Figure 13 SA5223 Differential RT vs DC IIN for large input current 160 0 1 2 3 4 5...

Page 10: ...8 6 4 2 0 2 4 FREQUENCY MHz VCC 5 5V TEMPERATURE 25 C SINGLE ENDED OUTPUT VCC 5 0V VCC 4 5V S dB 21 SD00540 Figure 17 Insertion Gain vs Frequency 9 8 7 6 5 4 3 2 1 0 1 START 1MHz STOP 200MHz FREQUENCY MHz LINEAR S GROUP DELAY ns 21 SINGLE ENDED OUTPUT VCC 5 0V TEMPERATURE 25 C SD00541 Figure 18 Group Delay vs Frequency 10 0 1 10 100 300 FREQUENCY MHz VCC 5 0V Temperature 25 C INPUT NOISE PA Hz 9 0...

Page 11: ...Philips Semiconductors Product specification SA5223 Wide dynamic range AGC transimpedance amplifier 150MHz 1995 Oct 24 11 SO8 plastic small outline package 8 leads body width 3 9mm SOT96 1 ...

Page 12: ...on Right to make changes Philips Semiconductors reserves the right to make changes without notice in the products including circuits standard cells and or software described or contained herein in order to improve design and or performance Philips Semiconductors assumes no responsibility or liability for the use of any of these products conveys no license or title under any patent copyright or mas...

Reviews: