background image

 

 

𝑓

max=

109

2𝜋𝐶𝑉

[𝐿𝑐−1]

    (Equation 1) 

 
Where,  f

max

 = maximum frequency (hertz)     

C = cable capacitance (picofarads)   
V  =  maximum  peak  output  from  sensor 
(volts)     
L

c

  =  constant  current  from  signal 

conditioner (mA)  

 

10

9

 = scaling factor to equate units 

 
Note that in this equation, 1 mA is subtracted from the total 
current supplied to sensor (L

c

). This is done to compensate 

for powering the internal electronics. Also, note that these 
are typical values only.  
 
When  driving  long  cables,  Equation  1  shows  that,  as  the 
length  of  the  cable,  peak  voltage  output  or  maximum 
frequency of interest increases, a greater constant current 
will be required to drive the signal. 
 
The  nomograph  on  page  12  of  this  manual  provides  a 
simple,  graphical  method  for  obtaining  the  expected 
maximum  frequency  capability  of  an  ICP®  measurement 
system. The maximum peak signal voltage amplitude, cable 
capacitance and supplied constant current must be known 
or presumed.  
 
For example, when running at 100 ft (30.5 m) cable with a 
capacitance  of  30  pF/ft,  the  total  capacitance  is  3,000pF. 
This  value  can  be  found  along  the  diagonal  cable 
capacitance  lines.  Assuming  the  sensor  operates  at  a 
maximum output range of 5 volts and the constant current 
available from the power supply is 2 mA, the ratio on the 
vertical axis can be calculated to equal 5. The intersection of 
the  total  cable  capacitance  and  this  ratio  result  in  a 
maximum frequency of approximately 10.2 kHz. 
 
The nomograph does not indicate whether the frequency 
amplitude  response  at  a  point  is  flat,  rising  or  falling.  For 
precautionary  reasons,  it  is  good  general  practice  to 
increase  the  constant  current  (if  possible)  to  the  sensor 
(within  its  maximum  limit)  so  that  the  frequency 
determined from the nomograph is approximately 1.5 to 2 
times greater than the maximum frequency of interest. 

 
Note: 

Higher  current  levels  will  deplete  battery-powered 

signal  conditioners  at  a  faster  rate.  Also,  any  current  not 
used  by  the  cable  goes  directly  to  power  the  internal 
electronics and will create heat. This may cause the sensor to 

exceed  its  maximum  temperature  specification.  For  this 
reason, do not supply excessive current over short cable runs 
or when testing at elevated temperatures.  
 

5.1 CABLE CONNECTOR PROCEDURE 

Care  and  attention  to  installation  is  essential,  as  the 
reliability and accuracy of your system is no better than that 
of the output cable.  

 
STEP 1: 

Ascertain that you have ordered the correct cable 

type.  
 
As with sensors, no cable can satisfy all applications. Special 
low-noise  cabling  should  be  used  with  high  impedance, 
charge-output  devices.  ICP®  sensors  usually  operate  with 
any  ordinary  tow-wire  cable.  Industrial  applications  often 
require twisted/shielded cables to reduce the effects of EMI 
and  RFI.  PTFE-jacketed  cabling  may  be  necessary  to 
withstand corrosive environments.  

 
STEP  2: 

Connect  the  cable  to  the  accelerometer.  A  small 

amount  of  thread-locking  compound  placed  on  the 
connector prior to attachment helps secure the cable during 
testing.  In  harsh  environments,  the  connection  can  be 
sealed with silicone rubber, O-rings, and flexible heat-shrink 
tubing. 

 
STEP  3: 

Plug  the  connector  of  the  cable  into  the  mating 

sensor  connector.  Then,  holding  the  sensor  stationary, 
secure  the  connector  in  place  by  tightening  down  the 
attached threaded cable sleeve.  

 
STEP 4: 

Route the cable to the signal conditioner, making 

certain  to  stress-relieve  the  sensor/cable  connection  and 
minimize motion by clamping the cable at regular intervals.  
 
Common sense should be used to avoid physical damage 
and  minimize  electrical  noise.  For  instance,  avoid  routing 
cables  near high-voltage  wires. Do  not  route  cables  along 
floors or walkways where they be stepped on or become 
contaminated.  Shielded  cables  should  have  the  shield 
grounded at one end only, normally at the instrumentation 
end.  

 
STEP  5: 

Finally,  connect  the  remaining  cable  end  to  the 

signal  conditioner  or  readout  device.  To  dissipate  charge 
that may have accumulated in the cable short the signal to 
ground prior to attachment.  

 
 

Summary of Contents for IMI SENSORS M621B41

Page 1: ...lerometer Installation and Operating Manual For assistance with the operation of this product contact PCB Piezotronics Inc Toll free 800 959 4464 24 hour SensorLine 716 684 0001 Fax 716 684 3823 E mai...

Page 2: ...alized tests including sensitivity at elevated or cryogenic temperatures phase response extended high or low frequency response extended range leak testing hydrostatic pressure testing and others For...

Page 3: ...tion on particular operating steps The following symbols may be found on the equipment described in this manual This symbol on the unit indicates that high voltage may be present Use standard safety p...

Page 4: ...China RoHS 2 Disclosure Table Pb Hg Cd Cr VI PBB PBDE O O O O O O PCB X O O O O O O O O O O O X O O O O O O O O O O O O O O O O O O O O O O O O O X O O O O O O O O O X O O O O O O O O O O O X O O O O...

Page 5: ...O Wires O O O O O O Cables X O O O O O Plastic O O O O O O Solder X O O O O O Copper Alloy Brass X O O O O O This table is prepared in accordance with the provisions of SJ T 11364 O Indicates that sai...

Page 6: ...ON A ECN NUMBER 49766 Operating Guide with Enclosed Warranty Information 3424 Walden Avenue Depew New York 14043 2495 Phone 716 684 0003 Fax 716 684 3823 Toll Free Line 1 800 959 4IMI Piezoelectric IC...

Page 7: ...ply low frequency and high frequency measurements Shear design sensors are preferred because of their inherent insensitivity to adverse environmental influences such as case or base strain and thermal...

Page 8: ...wer gain which is extremely close to unity and independent of input voltage Also the diode can be changed to supply higher currents for driving long cable lengths Constant current diodes as shown in F...

Page 9: ...nics However when operating AC coupled signal conditioners with readout devices having an input impedance of less than one megaohm thelow frequencyrangemaybeaffected 4 1 STANDARD STUD MOUNT This mount...

Page 10: ...derside of the mounting base Firmly press down on the assembly to displace any extra adhesive remaining under the base See Figure7 METHOD 2 Direct Adhesive Mount For restrictions of space or for conve...

Page 11: ...interference or radio frequency interference EMI or RFI To avoid ground loops thereshouldonlybeonegroundin the system It is recommended for permanent installations that the sensor becase isolatedand...

Page 12: ...ate Also any current not used by the cable goes directly to power the internal electronicsandwillcreateheat Thismaycausethesensorto exceed its maximum temperature specification For this reason donotsu...

Page 13: ...er the meter or LED and allow the sensor to power up If a faulty condition is monitored first check all system connections then check the functionality of the cable and signal conditioner If the syste...

Page 14: ...and former MIL STD 45662A and uses equipment directly traceable to NIST This assures an accurate calibration of relevant specifications The following includes a broad overview of the Back to Back Cal...

Page 15: ...A of constant current to extend battery life while continuous monitoring systems offer more current in order to drive longer cables Figure 16 shows a typical system for a sensor with integral electron...

Page 16: ...eive assistance via e mail at imi pcb com or visit our website at www pcb com 11 0 CUSTOMER SERVICE WARRANTY IMI a division of PCB Piezotronics guarantees Total Customer Satisfaction If at any time fo...

Page 17: ......

Page 18: ......

Page 19: ......

Reviews: