background image

 

PCB Load & Torque, Inc.   

 Toll-Free in USA 866-684-7107   

 716-684-0001   

 www.pcbloadtorque.com

 

 

 

DUAL BRIDGE LOAD CELL OPERATION MANUAL 

 

6

 

6.1.1 Measured Output 

 
The  applied  load  starting  at  zero  is  measured  in  five 
increments  to  full  scale.  Output  (mV/V)  is  measured  at  each 
increment.  The  straight-line  from  zero  to  the  full  scale 
measurement  is  compared  to  the  measured  readings  at  each 
increment  to  calculate  the  error  at  each  load  increment.    The 
deviations  (%  Full  Scale)  corresponding  to  non-linearity  at 
each measurement increment are then calculated. 

6.1.2 Hysteresis 

 
The  difference  between  the  ascending  and  descending 
measured readings at 40% of full scale is used to calculate the 
hysteresis value. 

6.1.3 Best Fit Output 

 
The  best  fit  calibration  second-order  equation  has  been 
calculated  from  the  calibration  data  by  the  method  of  least 
squares.  Deviation  between  measured  output  and  best-fit 
output  is  calculated  and  displayed  in  the  column  next  to  the 
best-fit  output  for  each  measurement  increment.  The 
deviations  (%  Full  Scale)  of  measured  outputs  from  the 
calculated best fit are tabulated for each measured reading. 

6.1.4 Strain Gage Measurements 

 
 
 
 
 
 
 
 
 
 

6.1.5 Shunt Calibration Standard Resistor 

 
All dual bridge load cell calibrations use a 60K Ohm (0.01%) 
precision  resistor  shunt  calibration  value  that  is  supplied  into 
the calibration report. 

6.1.6 Static Error Band (SEB) 

 
The  static  error  band  (SEB)  is  determined  by  the  maximum 
deviations of  the ascending and descending calibration points 
from  the  best  fit  straight  line  through  zero  output.  The  SEB 
includes the effects of nonlinearity, hysteresis, and non-return 
to minimum load. 
 
 
 

7.0 MOMENT COMPENSATION 

 
When  an  eccentric  axial  load  is 
applied to a load cell that is not 
coincident  exactly  with  the 
centerline  of  the  load  cell,  it 
introduces  bending  moments 
into  the  load  cell  structure.  The 
strain  gage  bridges  on  dual 
bridge  fatigue  rated  load  cells 
are  adjusted  such  that  the  error 
due  to  eccentric  loading  is  less 
than 

±

0.1% per inch of offset. 

 
Side  loads,  moments  and  torque  must  be  limited  to  avoid 
electrical  or  mechanical  damage  to  the  load  cell.  The 
allowable  extraneous  loads  are  directly  related  to  the  rated 
capacity of the load cell. 
 

 

Maximum side force allowed is 100% of the rated 
capacity for the load cell. 

 

Maximum  moment  allowed  is  100%  of  the  rated 
capacity times 1 inch. 

 

Maximum  torque  allowed  about  the  measurement 
axis is rated capacity times 1 inch. 

Maximum  error  due  to  side  loading  or  moment  loading  is 
0.1% per inch of the rated capacity.  Each dual bridge load cell 
is carefully tested and adjusted according to our specifications 
ensuring that crosstalk due to off-center loading, moments and 
side load is less than 0.1% of applied load. 
 
 

8.0 FATIGUE & OVERLOAD 

 
Dual  bridge  load  cells  are  designed  and  manufactured  to 
perform accurately and reliably for 100 million fully reversed 
full  scale  load  cycles.    They  have  been  specifically  designed 
for  applications  involving  high  cycle  fatigue  loading  on 
products and structures.  The designs are based on  more than 
four  decades  (since  1970)  of  experience  in  the  design  and 
manufacture of precision low-height load cells. 

 

The load cell structure is machined from aircraft quality alloy 
steel, heat treated, and finished with attention to details critical 
for  maximum  fatigue  life.    For  maximum  stiffness  and  low 
stresses  throughout  the  load  cell  structure,  the  maximum 
stresses are concentrated precisely under the strain gages. 

 

The  load  cell  structural  safety  factor  against  fatigue  failure  is 
in excess of 2.5 for alloy steel and 2 for aluminum.  See Figure 
14. The maximum shear stress measured by the bonded strain 
gages is less than 40% of the endurance limit shear stress for 
alloy steel and 48% for aluminum.  
 
 

Bridge Resistance: 

350 Ohm Nominal 

Excitation: 

+P(A) to –P(D) Ohms 

Signals: 

+S(B) to –S(C) Ohms 

Leakage to Ground: 

> 5k GOhm 

Bridge Unbalance: 

±

1.0% Full Scale 

Output: 

2.0 mV/V Nominal 

Maximum Voltage: 

20 VDC 

 

Table 7

 

– Strain Gage Measurements 

 

M

X

 

M

Y

 

Primary 

Axis 

Figure 13

 

- Extraneous Loads 

Summary of Contents for 1411-02ADB

Page 1: ...DUAL BRIDGE Installation and Operating Manual For assistance with the operation of this product contact PCB Load Torque Inc Toll free 866 684 7107 24 hour SensorLine 716 684 0001 Fax 248 888 8266 E ma...

Page 2: ...alized tests including sensitivity at elevated or cryogenic temperatures phase response extended high or low frequency response extended range leak testing hydrostatic pressure testing and others For...

Page 3: ...tion on particular operating steps The following symbols may be found on the equipment described in this manual This symbol on the unit indicates that high voltage may be present Use standard safety p...

Page 4: ...China RoHS 2 Disclosure Table Pb Hg Cd Cr VI PBB PBDE O O O O O O PCB X O O O O O O O O O O O X O O O O O O O O O O O O O O O O O O O O O O O O O X O O O O O O O O O X O O O O O O O O O O O X O O O O...

Page 5: ...O Wires O O O O O O Cables X O O O O O Plastic O O O O O O Solder X O O O O O Copper Alloy Brass X O O O O O This table is prepared in accordance with the provisions of SJ T 11364 O Indicates that sai...

Page 6: ...LECTRICAL INSTALLATION 5 5 1 Electrical Drawing Western Regional Std 5 5 2 Cable Grounding Considerations 5 6 0 CALIBRATION 5 6 1 Calibration Certificate Description 5 6 1 1 Measured Output 6 6 1 2 Hy...

Page 7: ...the parts under test have completed the planned fatigue test cycles 3 0 OVERVIEW Dual bridge fatigue rated load cells are specifically designed for repetitive testing Applications include material te...

Page 8: ...ote that the performance of the load cell may be affected if the factory installed mounting base is removed or modified 4 2 Mounting Load Cell to a Standard Base or Custom Fixture If the load cell is...

Page 9: ...ctor Protector 1 Remove the 4 40 x 1 4 button head cap screws from the connector using a 1 16 hex wrench as shown in Figure 7 2 Carefully pull the connector from the load cell Take care to not break o...

Page 10: ...wiring may result in unstable or noisy signals A simple test with a voltmeter connected between the power cord ground and the structure on which the load cell is mounted can confirm that the structur...

Page 11: ...s are adjusted such that the error due to eccentric loading is less than 0 1 per inch of offset Side loads moments and torque must be limited to avoid electrical or mechanical damage to the load cell...

Page 12: ...tion certificate and adjust the span or gain until the display reads the force value stated on the certificate 4 Repeat steps 1 3 to verify that a valid calibration setting has been obtained 5 If poss...

Page 13: ...ridge resistances A D excitation and B C the signal leads 9 Check bridge balance 10 Keep a record of your observations correct problems or contact PCB factory for assistance 11 2 1 Estimating Bridge B...

Page 14: ...factory for any reason For calibration services if possible a copy of the purchase order covering the requested services should be included with the returned load cell 13 0 WARRANTY Standard warranty...

Page 15: ...80 mm 8 Weight 135 lb 61 3 kg Mounting Thread 2 3 4 8 UN 3B No Metric Equivalent Sensing Element Strain Gage Strain Gage Mounting Torque 6000 lbf in 678 Nm Deflection at Full Scale Capacity 0 001 in 0...

Page 16: ...ECTOR WIRING CODE TYPICAL PIN A EXC PIN B SIG PIN C SIG PIN D EXC PIN E N C PIN F N C CONNECTOR B DUAL BRIDGE ONLY PROTECTIVE SHROUD THREAD x2 56 65 0 STANDARD LOAD CELL 2 3 4 8 UN 3B METRIC M LOAD CE...

Reviews: