PCB Piezotronics 116B03 Installation And Operating Manual Download Page 9

 

Drawing Number: 21067 
Revision: A 

 

PIEZOELECTRIC CHARGE MODE PRESSURE SENSOR GENERAL OPERATION MANUAL 

6 

4.0 

CALIBRATION 

 
These  sensors  may  be  calibrated  using  static  hydraulic 
techniques,  such  as  dead-weight  testers,  or  by  compar-
ison with a reference gage. 
 
When  calibrating  with  a  laboratory-style  charge 
amplifier, set the charge amplifier to LONG, for the time 
constant setting, and allow the sensor to stabilize before 
applying  pressure.    If  slow  drift  is  apparent,  apply  the 
pressure  to  the  desired  level,  and  immediately  take  a 
reading.    Release  the  pressure  and  take  another  reading 
at  zero  pressure  to  obtain  the  difference  between  the 
readings  at  the  desired  present  level  and  zero  pressure.  
If  the  drift  is  too  fast  to  take  a  reading,  clean  the  cable 
connections  according  to  the  procedures  out-lined  in 
Section 7.0, Maintenance. 
 
NOTE:  Do not attempt to use a charge amplifier which, 
in the long time constant position, has less than a 5 000- 
second  time  constant  for  quasi-static  calibration  of 
charge sensors.  Any drift may cause error. 
Several charge amplifiers are designed especially for use 
with  ceramic  sensors,  for  higher  low-frequency 
measurements.  In general, these types are unsuitable for 
calibration  of  quartz  pressure  sensors  by  quasi-static 
means. 
 
A  factory-supplied,  NIST-traceable  calibration  graph  is 
provided  with  each  sensor,  certifying  its  charge 
sensitivity  in  pC/psi,  or  when  used  with  an  in-line 
voltage amplifier, in mV/psi. 
 

5.0 

NORMAL OPERATION 

 
The high impedance signal generated by a charge output 
sensor  is  usually  conditioned  with  a  laboratory-style 
charge  amplifier,  such  as  the  PCB  Model  462A.    The 
charge  amplifier  converts  the  high-impedance  charge 
signal  generated  by  the  sensor  into  a  low-impedance 
voltage signal.  This signal may then be transmitted to a 
readout or recording device for analysis.  See Figure 5.1 
for a drawing of a typical system connection. 
 
NOTE:  When using charge-amplified systems, the noise 
floor of the system is dependent on the input capacitance 
to  the  charge  amplifier.    To  minimize  noise,  keep  the 
cable length between the pressure sensor and the charge 
amplifier  to  a  minimum.    Cable  length  does  not  affect 
the system sensitivity. 

 

 
Before connecting the low-noise cable from the pressure 
sensor  to  the  charge  amplifier,  be  certain  to  ground  the 
charge  amplifier.    This  ensures  that  any  excessive 
accumulated  static  charges  across  the  sensor/cable 
combination  are  harmlessly  discharged.    If  this 
precaution  is  not  observed,  the  input  FET  of  certain 
amplifiers may be destroyed.  Press the ground button of 
the  charge  amplifier  and  adjust  electrical  zero  if 
necessary. 
 
Once  system  components  are  connected,  wait  a  few 
minutes for the system to thermally stabilize.  Place the 
switch  in  the  OPR  (operate)  position  and  proceed  with 
the  measurement.    Refer  to  the  charge  amplifier  oper-
ating manual for further operating details. 
 
For  fixed  sensitivity  in-line  charge  amplifiers,  such  as 
the  PCB  Series  422,  the  system  sensitivity  (mV/psi)  is 
determined  as  the  product  of  the  charge  amplifier 
sensitivity  (mV/pC)  and  the  sensor  sensitivity  (pC/psi).  
With in-line voltage amplifiers, the system sensitivity is 
a  function  of  the  sensor,  cable,  and  the  in-line  voltage 
amplifier. 
 

5.1 

Polarity 

 
When  subjected  to  increasing  pressure,  these  pressure 
sensors  have  a  standard  negative-going  charge  output.  
Because most charge amplifiers are signal-inverting, the 
resultant  signal  is  positive-going.    Reverse-polarity 
sensors,  for  use  with  non-inverting  source  follower 
amplifiers, are available upon request (“P” option). 

Summary of Contents for 116B03

Page 1: ...ure Sensor Installation and Operating Manual For assistance with the operation of this product contact PCB Piezotronics Inc Toll free 800 828 8840 24 hour SensorLine 716 684 0001 Fax 716 684 0987 E ma...

Page 2: ...id the factory warranty Calibration Routine calibration of sensors and associated instrumentation is recommended as this helps build confidence in measurement accuracy and acquired data Equipment cali...

Page 3: ...warranty against defective material and workmanship for a period of one year from date of original purchase Contact PCB for a complete statement of our warranty Expendable items such as batteries and...

Page 4: ...that the sensor is supplied with optional features A option Ablative thermal barrier E option Emralon coating H option Hermetic seal J option Electrical isolation mounting adaptor required M option Me...

Page 5: ...ies 113A High Frequency Miniature Sensor The Series 113A High Frequency Miniature Sensor is a charge mode pressure sensor designed to measure shock wave blast explosion ultrasonic and dynamic combusti...

Page 6: ...rage pressure level over a wide amplitude range and a usable frequency range near DC to between 5 000 and 10 000 Hz the resonant frequency is 25 000 Hz The Model 171 is extremely sensitive with a nomi...

Page 7: ...nd L length of column feet For air at room temperature the equation becomes L 3300 Fr Where L passage length inches The natural frequency and approximately fastest pressure step rise time for various...

Page 8: ...z element The clamp nut is provided with either standard 5 16 24 or metric M7 x 0 75 threads and is supplied along with three seal rings Model 008A Hardline Cable is recommended for operating temperat...

Page 9: ...nce charge signal generated by the sensor into a low impedance voltage signal This signal may then be transmitted to a readout or recording device for analysis See Figure 5 1 for a drawing of a typica...

Page 10: ...DC offset voltage usually very tiny microvolts that exists at the input gate of the MOSFET circuit This minute leakage current exists in all real devices As demonstrated in Equation 1 the steady state...

Page 11: ...1 Introduction 6 4 Low Frequency Response Limitations In a normal charge amplifier the low frequency response is set by the RC time constant as established by the product of Cf and Rf The system acts...

Page 12: ...umulated electrostatic charges may build to the point that they may saturate or even damage the input circuitry of the charge amplifier Operate the charge amplifier in the SHORT time constant while th...

Page 13: ......

Page 14: ......

Page 15: ......

Reviews: