PCB Piezotronics 116B03 Installation And Operating Manual Download Page 10

 

Drawing Number: 21067 
Revision: A 

 

PIEZOELECTRIC CHARGE MODE PRESSURE SENSOR GENERAL OPERATION MANUAL 

7 

 

6.0 

HIGH-TEMPERATURE 

 

OPERATION 

 

6.1 

Introduction 

 
When 

subjected 

to 

elevated 

temperature, 

all 

piezoelectric  sensors/hardline  cable  systems  exhibit 
decreased  insulation  resistance,  due  in  part  to  the 
piezoelectric  element,  but  due  mostly  to  the  hardline 
cable necessary to withstand the high temperatures.  This 
situation  can  cause  serious  voltage  offset  problems  in 
direct-coupled  charge  amplifiers,  such  as  PCB  Models 
462,  463,  and  464,  as  well  as  with  the  miniature  Series 
422.    To  solve  this  problem,  the  user  must  AC  couple 
(capacitor)  the  charge  amplifier  to  the  sensor/cable 
system.    See  Section  6.3,  Solution  to  Reduced 
Resistance, for complete details. 
 

6.2 

Reduced Resistance at Charge 

 

Amplifier Input 

 
Figure 6.1 illustrates a simplified schematic of a typical 
direct-coupled charge amplifier where: 
 

R

f

 

= Feedback resistor (ohms) 

 

R

i

 

= Input leakage resistance (ohms) 

 

E

o

 

= Steady-state output voltage (volts) 

 

e

i

 

= Offset voltage: FET leakage (volts) 

 

C

f

 

= Feedback capacitor (farads) 

 

 

 
The  feedback  capacitor  C

comes  into  play  only  in  the 

dynamic  situation  and  its  influence  does  not  affect  the 
steady-state  situation.    The  voltage  e

i

  is  a  DC  offset 

voltage, usually very tiny (microvolts), that exists at the 
input gate of the MOSFET circuit.  This minute leakage 
current  exists  in  all  real  devices.As  demonstrated  in 
Equation 1, the steady-state (DC) output voltage E

o

 is: 

 
Equation 1 





+

=

i

f

i

o

R

R

e

E

1

 

This equation shows that if the input (leakage) resistance 
at  the  charge  amplifier  is  extremely  high  (approaching 
infinity), the output DC voltage approaches e

i

, usually a 

very tiny voltage.  However, as R

i

 decreases, the term 

i

f

R

R

+

1

 

increases,  such  that  the  output  voltage  can,  with  large 
ratios of R

/ R

i

, become large enough to result in a large 

E

o

, perhaps large enough to be outside the normal output 

voltage range of the charge amplifier. 
 
Because of the feedback capacitor C

f

, this output voltage 

change  usually  does  not  occur  rapidly  but  rather,  it 
manifests  itself  as  a  slow  drift  in  the  output  voltage 
level.  If R

i

 

is low enough with respect to R

f

, the voltage 

drift  may  continue  until  saturation  of  the  charge 
amplifier occurs. 
 

6.3 

Solution to Reduced Resistance 

 
Since the drift or offset problem is caused by a static or 
steady-state  imbalance  at  the  input  of  the  charge 
amplifier,  the  solution  involves  blocking  this  steady-
state  effect  while  allowing  the  desired  dynamic 
phenomena  to  pass.    This  may  be  accomplished  by 
installing  a  series  capacitor  at  the  input  of  the  charge 
amplifier,  between  the  offending  sensor  (or  low-
impedance hardline) and the input. 

Summary of Contents for 116B03

Page 1: ...ure Sensor Installation and Operating Manual For assistance with the operation of this product contact PCB Piezotronics Inc Toll free 800 828 8840 24 hour SensorLine 716 684 0001 Fax 716 684 0987 E ma...

Page 2: ...id the factory warranty Calibration Routine calibration of sensors and associated instrumentation is recommended as this helps build confidence in measurement accuracy and acquired data Equipment cali...

Page 3: ...warranty against defective material and workmanship for a period of one year from date of original purchase Contact PCB for a complete statement of our warranty Expendable items such as batteries and...

Page 4: ...that the sensor is supplied with optional features A option Ablative thermal barrier E option Emralon coating H option Hermetic seal J option Electrical isolation mounting adaptor required M option Me...

Page 5: ...ies 113A High Frequency Miniature Sensor The Series 113A High Frequency Miniature Sensor is a charge mode pressure sensor designed to measure shock wave blast explosion ultrasonic and dynamic combusti...

Page 6: ...rage pressure level over a wide amplitude range and a usable frequency range near DC to between 5 000 and 10 000 Hz the resonant frequency is 25 000 Hz The Model 171 is extremely sensitive with a nomi...

Page 7: ...nd L length of column feet For air at room temperature the equation becomes L 3300 Fr Where L passage length inches The natural frequency and approximately fastest pressure step rise time for various...

Page 8: ...z element The clamp nut is provided with either standard 5 16 24 or metric M7 x 0 75 threads and is supplied along with three seal rings Model 008A Hardline Cable is recommended for operating temperat...

Page 9: ...nce charge signal generated by the sensor into a low impedance voltage signal This signal may then be transmitted to a readout or recording device for analysis See Figure 5 1 for a drawing of a typica...

Page 10: ...DC offset voltage usually very tiny microvolts that exists at the input gate of the MOSFET circuit This minute leakage current exists in all real devices As demonstrated in Equation 1 the steady state...

Page 11: ...1 Introduction 6 4 Low Frequency Response Limitations In a normal charge amplifier the low frequency response is set by the RC time constant as established by the product of Cf and Rf The system acts...

Page 12: ...umulated electrostatic charges may build to the point that they may saturate or even damage the input circuitry of the charge amplifier Operate the charge amplifier in the SHORT time constant while th...

Page 13: ......

Page 14: ......

Page 15: ......

Reviews: