background image

012-04840E

Dynamics Cart

19

®

!

Experiment 6: Sliding Friction and

Conservation of Energy

EQUIPMENT NEEDED:

– Dynamics Cart (ME-9430)

– Stopwatch (SE-8702)

– Metric tape (SE-8731)

– Brick or block of wood

– Long board that can be used as a ramp

– Friction Block (003-04708)

– Protractor

Purpose

In this lab, the Dynamics Cart will be launched down a
ramp, as shown in Figure 6.1, while riding on a friction
block. The initial elastic potential energy and gravitational
potential energy of the cart are converted to thermal energy
as the cart slides to a stop. The thermal energy generated on
the surfaces is the same as the work done against sliding
friction.

Theory

Using the principle of conservation of energy, we can equate the initial energy of the system with the final
(i.e. thermal) energy of the system. This leads to:

1/2kx

2

 + mgDsin

θ

 = µ

k

mgDcos

θ

             (EQN-1)

(elastic P.E.) + (gravitational P.E.) = (work done against friction)

where 

k

 is the spring constant of the plunger (from Experiment 4), 

x

 is the distance that the plunger is pushed

in, 

m

 is the mass of the cart plus the friction block, 

D

 is the distance that the block slides after the cart’s plunger

is released, 

θθθθθ

 is the angle of the ramp to the horizontal, and 

µ

k

 is the coefficient of kinetic or “sliding” friction.

In this experiment, you will use the principle of the conservation of energy to predict 

D

, given certain measure-

ments you will make and the value of k determined in Experiment 4. First you will need to determine the
coefficient of kinetic or “sliding” friction for the friction block.

Determining

 

µ

k

:  If the angle of the ramp is high enough, the friction block will slide down the ramp with

uniform acceleration due to a net force on the block. The net force on the block is the difference between
the component of the gravitational force (mgsinø) that is parallel to the surface of the ramp and the friction
force (-µ

k

mgcosø) that retards the motion . The angle ø is the angle of the ramp when the block slides

down the ramp with uniform acceleration. The acceleration down the ramp is given by:

a = gsinø

     

- µ

k

gcosø  

(EQN-2)

The average acceleration down the ramp is given by:

a = 2d/t

2

(EQN-3)

where 

d

 is the total distance the block slides and 

t

 is the time required to slide through that distance. If the

acceleration is uniform, 

EQN-2

 equals 

EQN-3

. You can use the measured values of the angle ø (the angle of

uniform acceleration), the distance 

d

, and the time 

t

 to calculate the kinetic coefficient of friction 

µ

k

.

Figure 6.1

friction block

Summary of Contents for ME-9430

Page 1: ...Instruction Manual and Experiment Guide for the PASCO scientific Model ME 9430 012 04840E Dynamics Cart with Mass...

Page 2: ......

Page 3: ...s Cart with Mass Manual is copyrighted and all rights reserved However permission is granted to non profit educational institutions for reproduction of any part of this manual providing the reproducti...

Page 4: ...age vs Instantaneous Velocities 3 Experiment 2 Coefficient of Friction 5 Experiment 3 Newton s Second Law Predicting Accelerations 7 Experiment 4 Cart Calibration Measuring the Spring Constant 11 Expe...

Page 5: ...clude rounded corners on molded plastic end caps for durability a tray on top of the cart for application of additional mass and the ability of the carts to be stacked While performing experiments you...

Page 6: ...9448 or Super Pulley ME 9450 used with Model ME 9376A Universal Table Clamp and Model SA 9242 Pulley Mount ing Rod Metric Ruler such as PASCO s Metric Measuring Tape SE 8712 and 30cm 12in Ruler SE 87...

Page 7: ...given by vav EQN 1 If the acceleration of the cart is constant as it rolls to a stop over the floor then the initial instantaneous velocity of the cart at the final moment of launch is given by v0 2v...

Page 8: ...slightly upward to allow one of the notches on the plunger bar to catch on the edge of the small metal bar at the top of the hole NOTE If the timer feels that a distraction interfered with the measur...

Page 9: ...e value of two unknowns you must have two equations Theory The cart will be launched several times in one direction and then it will be launched several times along the same course but in the opposite...

Page 10: ...2 1 3 Using EQN 3 compute the accelerations corresponding to your data and an average accel eration for each of the two directions 4 Using the results of step 3 determine r and by solving for the two...

Page 11: ...An experimental value for the cart s acceleration a can be determined from Assuming that the tabletop is truly horizontal i e level Newton s Second Law F ma predicts that the acceleration of this sys...

Page 12: ...nd record this distance at the top of Table 3 1 NOTE The total mass of the system will remain constant throughout the experiment 7 Practice releasing the cart being careful not to give it any push or...

Page 13: ...m MTOTAL __________ grams Trial 1 5 4 3 2 6 Diff Average time sec m grams aexp cm s2 aTh cm s2 8 7 Table 3 1 10 50 40 30 20 60 80 70 Questions 1 Can you think of any systematic errors that would effec...

Page 14: ...012 04840E Dynamics Cart 10 Notes...

Page 15: ...ing plunger As compressional forces F are applied to the spring the spring will compress a distance x which is measured with respect to its uncompressed equilibrium position If F vs x is plotted on gr...

Page 16: ...ow your slope calcula tions on the graph and record k below 6 Determine the mass of the cart using a mass balance and record this value below 7 Using EQN 3 and your values for m xo i e the compression...

Page 17: ...012 04840E Dynamics Cart 13 Table 4 1 Trial 1 5 4 3 2 6 m kg 8 7 x meters F mg newtons...

Page 18: ...012 04840E Dynamics Cart 14 Notes...

Page 19: ...ill call this zero impulse sweet spot SS2 For a given bat and pivot the position of SS2 can be found from where I is the rotational inertia of the bat for the corresponding pivot m is the total mass o...

Page 20: ...have chosen and release it allowing it to strike the cart plunger Record the corresponding values of y and x in Table 5 1 4 Repeat step 3 four times for each value of y changing it from roughly 10 to...

Page 21: ...h both SS1 and SS2 coincide If so what changes would have to occur to the uniform rod to bring SS1 and SS2 closer together You might use the Sweet Spot computer program to help you answer this 2 What...

Page 22: ...er of mass is the pivot located m S INPUT How large is the load mass kg m IF m 0 GOTO Skip INPUT How far is the load mass from the pivot m y Skip I 1 12 Ms L 2 Ms S 2 m y 2 PE Ms S m y 1 COS theta g W...

Page 23: ...eased is the angle of the ramp to the horizontal and k is the coefficient of kinetic or sliding friction In this experiment you will use the principle of the conservation of energy to predict D given...

Page 24: ...n and enter it below data Table 6 1 4 Use EQN 2 to calculate the coefficient of kinetic or sliding friction Enter it below the data table Prediction of D and Measurement of D 5 Now reduce the angle of...

Page 25: ...eleration _________ coefficient of sliding friction _________ _________ Predicted value of D _________ cm Questions 1 In analyzing this system has the energy been fully accounted for Discuss 2 How do...

Page 26: ...012 04840E Dynamics Cart 22 Notes...

Page 27: ...reinstall A 1 Phillips point screw driver is required Replacing the Front End Cap Attachments Screw the plunger bar knob finger tight onto the plunger bar Peel off Velcro tab and replace with new tab...

Page 28: ...add End cap plug 648 04694 1 Plunger bar 648 04653 1 Plunger bar knob assembly Screw 10 32x1 4 socket cap 610 179 1 Knob 620 033 1 Plunger bar catch cover 699 04658 1 Compression spring plunger bar 6...

Page 29: ...ay you won t lose valuable data If possible have the apparatus within reach when calling This makes descriptions of individual parts much easier If your problem relates to the instruction manual note...

Page 30: ......

Reviews: