background image

Range Selection

Rotary switches and a slide switches on the side of the module are 
used to select input and output ranges to match your application. 
Switch A:  Excitation voltage 
Switch B:  Input range 
Switch C:  Input offset (see table on next page) 
Switch D:  Output range 
Switch E :  Set to "V" for voltage output or 
 

Set to "I" for current output

It is generally easier to select ranges before installing the module 
on the DIN rail. The tables below list available settings, ranges, 
and offsets. The module side label lists common ranges.
Determine how much output in millivolts the load cell will pro-
duce at full load. Multiply the manufacturer's mV/V sensitivity 
specification by the applied excitation voltage.
For example, a load cell rated for 3 mV/V sensitivity using 10 
VDC excitation will produce an output of 0 to 30 mV for load 
variations from 0 to 100%.

3 mV/V sensitivity  X  10 VDC excitation  =  30 mV range

Excitation Voltage Setup

Refer to the sensor manufac-
turer's recommendations to 
determine what excitation volt-
age to use.
Set Excitation rotary switch A to 
desired excitation voltage.
After installation the excitation 
fine adjust potentiometer may 
be used to precisely trim this 
voltage, if desired.

I/O Range Selection B, C, D, E

1.  From the table below, find the rotary switch combination that 

matches your I/O ranges and set rotary switches B, C, and D. 

2.  Set switch E to "V" for voltage output or "I" for current output.
3.  For ranges that fall between the listed ranges use the next 

highest setting and trim the output signal with the zero and 
span potentiometers as described in the Calibration section.

Using Offset Switch C

Offset switch C allows canceling or taring of non-zero dead-
weights or other sensor offsets such as:

 

O

Compensate for tare weights or scale deadweight to get 
zero output when a load is on the platform. 

 

O

Compensate for low-output sensors (e.g., less than 1 mV/V) 
that may have large zero offsets. Switch C can realign the 
zero control so it has enough range to produce the desired 
zero output. 

 

O

Raising the offset to allow calibration of bipolar sensors 
such as ±10 mV.

 

O

Lowering the offset to compensate for elevated input 
ranges such as 10-20 mV.

1.  Switch C does not interact with 

any other switch and is the 
only switch needed to correct 
zero offsets. Its only purpose 
is to adjust or cancel effects of 
the low end of the input range 
not corresponding nominally 
to 0 mV. Setting this switch to 
“0” results in no offset.

2.  To RAISE the output zero, rotate 

switch C from “1” thru “7”, 
until the Zero control can be set 
for your application.

3.  To LOWER the output zero, 

rotate switch C from “9” thru 
“F”, until the Zero control can 
be set for your application. 

4. After all switches are set, 

repeat the calibration proce-
dure.

DMD4059 Series Strain Gauge to DC Isolated Transmitter

2

Output

0-1 V

0-2 V

0-4 V

1-5 V

0-5 V

0-8 V

2-10 V

0-10 V

±5 V

±10 V 0-2 mA 0-4 mA 0-8 mA 2-10 mA 0-10 mA 0-16 mA 4-20 mA 0-20 mA

Switches

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

BCDE

Input

 

0-5 mV

200V

208V

201V

206V

209V

202V

207V

203V

204V

205V

200I

208I

201I

206I

209I

202I

207I

203I

  0-10 mV

A00V

A08V

A01V

A06V

A09V

A02V

A07V

A03V

A04V

A05V

A00I

A08I

A01I

A06I

A09I

A02I

A07I

A03I

  0-20 mV

300V

308V

301V

306V

309V

302V

307V

303V

304V

305V

300I

308I

301I

306I

309I

302I

307I

303I

  0-25 mV

600V

608V

601V

606V

609V

602V

607V

603V

604V

605V

600I

608I

601I

606I

609I

602I

607I

603I

  0-30 mV

E00V

E08V

E01V

E06V

E09V

E02V

E07V

E03V

E04V

E05V

E00I

E08I

E01I

E06I

E09I

E02I

E07I

E03I

  0-40 mV

B00V

B08V

B01V

B06V

B09V

B02V

B07V

B03V

B04V

B05V

B00I

B08I

B01I

B06I

B09I

B02I

B07I

B03I

  0-50 mV

000V

008V

001V

006V

009V

002V

007V

003V

004V

005V

000I

008I

001I

006I

009I

002I

007I

003I

  0-100 mV

800V

808V

801V

806V

809V

802V

807V

803V

804V

805V

800I

808I

801I

806I

809I

802I

807I

803I

  0-120 mV

F00V

F08V

F01V

F06V

F09V

F02V

F07V

F03V

F04V

F05V

F00I

F08I

F01I

F06I

F09I

F02I

F07I

F03I

  0-200 mV

100V

108V

101V

106V

109V

102V

107V

103V

104V

105V

100I

108I

101I

106I

109I

102I

107I

103I

  0-250 mV

400V

408V

401V

406V

409V

402V

407V

403V

404V

405V

400I

408I

401I

406I

409I

402I

407I

403I

  0-300 mV

C00V

C08V

C01V

C06V

C09V

C02V

C07V

C03V

C04V

C05V

C00I

C08I

C01I

C06I

C09I

C02I

C07I

C03I

  0-400 mV

900V

908V

901V

906V

909V

902V

907V

903V

904V

905V

900I

908I

901I

906I

909I

902I

907I

903I

Excitation

Switch A

 

10 V

A

 

9 V

9

 

8 V

8

 

7 V

7

 

6 V

6

 

5 V

5

 

4 V

4

 

3 V

3

 

2 V

2

 

1 V

1

 

0 V

0

Offset  

% of Span

Switch C

 105%

7

 90%

6

 75%

5

 60%

4

 45%

3

 30%

2

 15%

1

 0%

0

 

–15%

9

 

–30%

A

 

–45%

B

 

–60%

C

 

–75%

D

 

–90%

E

  –105%

F

A

B

C

D

E

0-5 mV0-10 mV0-20 mV0-25 mV0-30 mV0-40 mV0-50 mV0-100 mV

0-200 mV

0-250 mV

BCD

200

209

206

204

203

205

207

Rotary Switches 

0-1V

0-5V

1-5V

+/-5V

0-10V

+/-10V

4-20mA

BCD

300

309

306

304

303

305

307

BCD

600

609

606

604

603

605

607

BCD

E00

E09

E06

E04

E03

E05

E07

BCD

B00

B09

B06

B04

B03

B05

B07

BCD

000

009

006

004

003

005

007

BCD

800

809

806

804

803

805

807

BCD

100

109

106

104

103

105

107

BCD

400

409

406

404

403

405

407

BCD

A00

A09

A06

A04

A03

A05

A07

OUTPUT

INPUT

0-30mV IN, 4-20mA OUT: CODE 0E7

Set switch “B” to 0; “C” to E; “D” to 7

EXAMPLE

:

Excitation Switch

Voltage

Position

10V

9V

8V

7V

6V

5V

4V

3V

2V

1V

0V

A

9

8

7

6

5

4

3

2

1

0

1. Set Switch A for desired Excitation Voltage.
2. Set Switches B/C/D for desired Input / Output ranges.
3. Set Switch E for Voltage or Current as required.
4. Set Excitation / Zero / Span / Test Cal. Controls

Connections

3
4
6
9

10
11
12
13
16

Term. #

Signal

Sig. Out –
Sig. Out +
Sense Lead
Sig. Input +
Exc. –
Sig. Input –
Exc. +
Power +
Power –

DMD4059

Strain Gauge to 

DC Isolated Transmitter

Output 

V          I

Excitation

Input

Output

Offset

For more Details 
and Instructions 
see Data Sheet

4

C

0

8

E

2

A

6

3

F

B

7

5

9

D

1

0

5

1

6

4

9

7 8

3

2

4

C

0

8

E

2

A

6

3

F

B

7

5

9

D

1

4

C

0

8

E

2

A

6

3

F

B

7

5

9

D

1

Electrical Connections

Check white model/serial number label for module operating 
voltage to make sure it matches available power.
WARNING! All wiring must be performed by a qualified electri-
cian or instrumentation engineer. See diagram at right for 
terminal designations and wiring examples. 
Avoid shock hazards! Turn signal input, output, and power off 
before connecting or disconnecting wiring. Connect I/O wiring 
before power wiring.

Module Power Terminals

When using DC power, either polarity is acceptable, but for 
consistency with similar products, positive (+) can be wired to 
terminal 13 and negative (–) can be wired to terminal 16. 

Signal Input Terminals

Connect up to 4 strain gauges or load cells. See manufacturer’s 
specifications for wiring designations and wire color-coding. 
Polarity must be observed when connecting inputs.
CAUTION: Never short the excitation leads together. This will 
cause internal damage to the module.
Some bridges may have one or two sense leads. See manu-
facturer’s specifications. Sense leads allow the DMD4059 to 
compensate for leadwire resistance effects. Observe polarity 
when connecting sense leads.
If no sense lead is used, jumper sense (+) terminal 6 and excita-
tion (+) 12. 
Calibration should be done after all connections are made.

Signal Output Terminals

Polarity must be observed when connecting the signal output.
The DMD4059 output can be wired to provide either a sinking 
or sourcing mA output. If your device accepts a current input, 
determine if it provides power to the current loop or if it must be 
powered by the DMD4059 module. 
Use a multi-meter to check for voltage at your device’s input 
terminals. Typical voltage may be 9-24 VDC. See the wiring 
diagram for the appropriate connections.

Summary of Contents for DMD4059

Page 1: ...ncrements Maximum Output 10 VDC maximum at 120 mA Drive Capability Up to four 350 Ω bridges at 10 VDC Fine Adjustment 5 via multi turn potentiometer Stability 0 01 per C Sense Lead Compensation Better than 0 01 per 1 Ω change in leadwire resistance Maximum leadwire resistance 10 Ω with 350 Ω at 10 VDC LoopTracker Variable brightness LEDs for input output loop level and status DC Output Ranges Volt...

Page 2: ...000V 008V 001V 006V 009V 002V 007V 003V 004V 005V 000I 008I 001I 006I 009I 002I 007I 003I 0 100 mV 800V 808V 801V 806V 809V 802V 807V 803V 804V 805V 800I 808I 801I 806I 809I 802I 807I 803I 0 120 mV F00V F08V F01V F06V F09V F02V F07V F03V F04V F05V F00I F08I F01I F06I F09I F02I F07I F03I 0 200 mV 100V 108V 101V 106V 109V 102V 107V 103V 104V 105V 100I 108I 101I 106I 109I 102I 107I 103I 0 250 mV 400V...

Page 3: ...tputs failure to illuminate or a failure to change in intensity as the process changes may indicate a problem with the module power or signal output wiring Diagnostic Voltage Measurements Using a meter with at least 10 megaohm input impedance measure the voltage coming from the strain gauge at the locations shown Sensitivity is measured in mV V Positive Meter Lead Negative Meter Lead Meter Reading...

Page 4: ...by OMEGA if the unit is found to be defective it will be repaired or replaced at no charge OMEGA s WARRANTY does not apply to defects resulting from any action of the purchaser including but not limited to mishandling improper interfacing operation outside of design limits improper repair or unauthorized modification This WARRANTY is VOID if the unit shows evidence of having been tampered with or ...

Reviews: