background image

1997 Jun 12

7

 

NXP Semiconductors

Product specification

2 W BTL audio amplifier

TDA8543

Notes to the AC characteristics

1. Gain of the amplifier is 

in test circuit of Fig.4.

2. The noise output voltage is measured at the output in a frequency range from 20 Hz to 20 kHz (unweighted), with 

a source impedance of R

S

= 0

Ω

 at the input.

3. Supply voltage ripple rejection is measured at the output, with a source impedance of R

S

= 0

Ω

 at the input.

The ripple voltage is a sine wave with a frequency of 1 kHz and an amplitude of 100 mV (RMS), which is applied 
to the positive supply rail.

4. Supply voltage ripple rejection is measured at the output, with a source impedance of R

S

= 0

Ω

 at the input.

The ripple voltage is a sine wave with a frequency between 100 Hz and 20 kHz and an amplitude of 100 mV (RMS), 
which is applied to the positive supply rail.

5. Output voltage in mute position is measured with an input voltage of 1 V (RMS) in a bandwidth of 20 kHz, so including 

noise.

2

R2
R1

--------

×

TEST AND APPLICATION INFORMATION

Test conditions

Because the application can be either Bridge Tied Load 
(BTL) or Single-Ended (SE), the curves of each application 
are shown separately.

The thermal resistance = 55 K/W for the DIP16 envelope; 
the maximum sine wave power dissipation 
for T

amb

= 25

°

C is:

For T

amb

= 60

°

C the maximum total power dissipation is: 

See the power derating curve illustrated in Fig.3.

BTL application

T

amb

= 25

°

C if not specially mentioned, V

CC

= 5 V, 

f = 1 kHz,  R

L

= 8

Ω

, G

v

= 20 dB, audio band-pass 

22 Hz to 22 kHz. 

The BTL application diagram is shown in Fig.4.

The quiescent current has been measured without 
any load impedance. The total harmonic distortion 
as a function of frequency was measured with a low-pass 
filter of 80 kHz. The value of capacitor C2 influences 
the behaviour of the SVRR at low frequencies, increasing 
the value of C2 increases the performance of the SVRR.
The figure of the mode select voltage (V

ms

) as a function 

of the supply voltage shows three areas; operating, mute 
and standby. It shows, that the DC-switching levels 
of the mute and standby respectively depends 
on the supply voltage level.

SE application

T

amb

= 25

°

C if not specially mentioned, V

CC

= 7.5 V, 

f = 1 kHz,  R

L

= 4

Ω

, G

v

= 20 dB, audio band-pass 

22 Hz to 22 kHz.

The SE application diagram is shown in Fig.14.

The capacitor value of C3 in combination with the load 
impedance determines the low frequency behaviour. 
The total harmonic distortion as a function of frequency 
was measured with low-pass filter of 80 kHz. The value 
of capacitor C2 influences the behaviour of the SVRR 
at low frequencies, increasing the value of C2 increases 
the performance of the SVRR.

General remark

The frequency characteristic can be adapted 
by connecting a small capacitor across the feedback 
resistor. To improve the immunity of HF radiation in radio 
circuit applications, a small capacitor can be connected 
in parallel with the feedback resistor; this creates a 
low-pass filter.

150

25

55

----------------------

2.27 W

=

150

60

55

----------------------

1.63 W

=

Summary of Contents for TDA8543

Page 1: ...DATA SHEET Product specification 1997 Jun 12 INTEGRATED CIRCUITS TDA8543 2 W BTL audio amplifier...

Page 2: ...ly The circuit contains a BTL amplifier with a complementary PNP NPN output stage and standby mute logic The TDA8543T comes in a 16 pin SO package and the TDA8543 in a 16 pin DIP package APPLICATIONS...

Page 3: ...ng mode select standby mute operating SVR 4 half supply voltage decoupling ripple rejection IN 5 positive input IN 6 negative input n c 7 not connected n c 8 not connected n c 9 not connected n c 10 n...

Page 4: ...E pin is VCC 0 5 V or if this pin is floating At a MODE voltage level of less than 0 5 V the amplifier is fully operational In the range between 1 5 V and VCC 1 5 V the amplifier is in mute condition...

Page 5: ...1 At THD 10 BTL VCC V RL Po W 1 CONTINUOUS SINE WAVE DRIVEN Pmax W Tamb max C SO16 DIP16 5 8 1 2 0 7 80 112 7 5 8 2 2 1 6 62 7 5 16 1 4 0 9 60 100 9 16 2 0 1 3 78 9 25 1 3 0 9 60 100 Fig 3 Power derat...

Page 6: ...operating 2 2 5 18 V Iq quiescent current RL note 1 8 12 mA Istb standby current VMODE VCC 10 A VO DC output voltage note 2 2 2 V VOUT VOUT differential output voltage offset 50 mV IIN IIN input bias...

Page 7: ...pplication Tamb 25 C if not specially mentioned VCC 5 V f 1 kHz RL 8 Gv 20 dB audio band pass 22 Hz to 22 kHz The BTL application diagram is shown in Fig 4 The quiescent current has been measured with...

Page 8: ...6 VCC Vin OUT IN IN OUT 11 100 nF 100 F 12 13 TDA8543 5 GND RL SVR 4 3 MODE 14 C2 47 F 1 F C1 R1 R2 11 k 56 k Fig 5 Iq as a function of VCC RL handbook halfpage 0 Iq mA VCC V 15 10 5 0 4 20 8 12 16 MG...

Page 9: ...105 1 3 2 Fig 8 SVRR as a function of frequency handbook halfpage 80 60 40 20 MGD879 10 102 103 SVRR dB f Hz 104 105 1 2 3 VCC 5 V 8 Rs 0 Vr 100 mV 1 Gv 30 dB 2 Gv 20 dB 3 Gv 6 dB Fig 9 Po as a funct...

Page 10: ...V RL 8 handbook halfpage MGK407 0 0 5 2 5 2 1 6 1 2 0 4 0 0 8 1 1 5 2 Po W 1 2 3 P W Fig 12 Vo as a function of Vms Band pass 22 Hz to 22 kHz 1 VCC 3 V 2 VCC 5 V 3 VCC 12 V handbook halfpage 10 1 10 1...

Page 11: ...12 13 TDA8543 5 GND RL SVR 4 3 MODE 14 C2 47 F 1 F C1 R1 R2 11 k 110 k Fig 15 THD as a function of Po handbook halfpage 10 1 THD 10 2 10 1 MGD884 10 2 10 1 1 Po W 10 1 3 2 f 1 kHz Gv 20 dB 1 VCC 7 5 V...

Page 12: ...5 1 3 2 Fig 18 Po as a function of VCC 1 THD 10 RL 4 2 THD 10 RL 8 3 THD 10 RL 16 handbook halfpage 0 4 1 2 3 8 Po W VCC V 16 2 0 1 6 12 1 2 0 8 0 4 MGD887 Fig 19 Worst case power dissipation as a fun...

Page 13: ...roduct specification 2 W BTL audio amplifier TDA8543 handbook full pagewidth MGK411 TDA8543 MS IN VP 100 F 100 nF 56 k 11 k 1 F 47 F 10 k 10 k 1 8 16 9 OUT OUT Fig 21 Printed circuit board layout BTL...

Page 14: ...b max w ME e1 1 40 1 14 0 055 0 045 0 53 0 38 0 32 0 23 21 8 21 4 0 86 0 84 6 48 6 20 0 26 0 24 3 9 3 4 0 15 0 13 0 254 2 54 7 62 0 3 8 25 7 80 0 32 0 31 9 5 8 3 0 37 0 33 2 2 0 087 4 7 0 51 3 7 0 15...

Page 15: ...0 36 0 25 0 19 10 0 9 8 4 0 3 8 1 27 6 2 5 8 0 7 0 6 0 7 0 3 8 0 o o 0 25 0 1 DIMENSIONS inch dimensions are derived from the original mm dimensions Note 1 Plastic or metal protrusions of 0 15 mm 0 00...

Page 16: ...Reflow soldering requires solder paste a suspension of fine solder particles flux and binding agent to be applied to the printed circuit board by screen printing stencilling or pressure syringe dispen...

Page 17: ...ns and product descriptions at any time and without notice This document supersedes and replaces all information supplied prior to the publication hereof Suitability for use NXP Semiconductors product...

Page 18: ...ts or other industrial or intellectual property rights Export control This document as well as the item s described herein may be subject to export control regulations Export might require a prior aut...

Page 19: ...ocument does not form part of any quotation or contract is believed to be accurate and reliable and may be changed without notice No liability will be accepted by the publisher for any consequence of...

Reviews: