NVM_FERSTAT field descriptions (continued)
Field
Description
attempted on a flash block that was under a flash command operation. The DFDIF flag is cleared by
writing a 1 to DFDIF. Writing a 0 to DFDIF has no effect on DFDIF.
NOTE: The single bit fault and double bit fault flags are mutually exclusive for parity errors, meaning that
an ECC fault occurrence can be either single fault or double fault but never both. A simultaneous
access collision, when the flash array read operation is returning invalid data attempted while a
command is running, is indicated when both SFDIF and DFDIF flags are high.
NOTE: There is a one cycle delay in storing the ECC DFDIF and SFDIF fault flags in the register. At least
one NOP is required after a flash memory read before checking FERSTAT for the occurrence of
EEC errors.
0
No double bit fault detected.
1
Double bit fault detected or a flash array read operation returning invalid data was attempted while
command running.
0
SFDIF
Single Bit Fault Detect Interrupt Flag
With the IGNSF bit in the FCNFG register clear, the SFDIF flag indicates that a single bit fault was
detected in the stored parity and data bits during a flash array read operation or that a flash array read
operation returning invalid data was attempted on a flash block that was under a flash command
operation. The SFDIF flag is cleared by writing a 1 to SFDIF. Writing a 0 to SFDIF has no effect on
SRFDIF.
0
No single bit fault detected.
1
Single bit fault detected and corrected or a flash array read operation returning invalid data was
attempted while command running.
4.6.8 Flash Protection Register (NVM_FPROT)
The FPROT register defines which flash sectors are protected against program and erase
operations.
The unreserved bits of the FPROT register are writable with the restriction that the size of
the protected region can only be increased (see
).
During the reset sequence, the FPROT register is loaded with the contents of the flash
protection byte in the flash configuration field at global address 0xFF7C located in flash
memory. To change the flash protection that will be loaded during the reset sequence, the
upper sector of the flash memory must be unprotected, then the flash protection byte must
be reprogrammed.
Trying to alter data in any protected area in the flash memory will result in a protection
violation error and the FPVIOL bit will be set in the FSTAT register. The block erase of a
flash block is not possible if any of the flash sectors contained in the same flash block are
protected.
Flash and EEPROM registers descriptions
MC9S08PA4 Reference Manual, Rev. 5, 08/2017
92
NXP Semiconductors
Summary of Contents for MC9S08PA4
Page 1: ...MC9S08PA4 Reference Manual Supports MC9S08PA4 Document Number MC9S08PA4RM Rev 5 08 2017 ...
Page 2: ...MC9S08PA4 Reference Manual Rev 5 08 2017 2 NXP Semiconductors ...
Page 22: ...MC9S08PA4 Reference Manual Rev 5 08 2017 22 NXP Semiconductors ...
Page 28: ...System clock distribution MC9S08PA4 Reference Manual Rev 5 08 2017 28 NXP Semiconductors ...
Page 150: ...Port data registers MC9S08PA4 Reference Manual Rev 5 08 2017 150 NXP Semiconductors ...
Page 196: ...Human machine interfaces HMI MC9S08PA4 Reference Manual Rev 5 08 2017 196 NXP Semiconductors ...
Page 224: ...Instruction Set Summary MC9S08PA4 Reference Manual Rev 5 08 2017 224 NXP Semiconductors ...
Page 232: ...Functional Description MC9S08PA4 Reference Manual Rev 5 08 2017 232 NXP Semiconductors ...
Page 258: ...FTM Interrupts MC9S08PA4 Reference Manual Rev 5 08 2017 258 NXP Semiconductors ...
Page 294: ...Functional description MC9S08PA4 Reference Manual Rev 5 08 2017 294 NXP Semiconductors ...
Page 398: ...Resets MC9S08PA4 Reference Manual Rev 5 08 2017 398 NXP Semiconductors ...
Page 400: ...MC9S08PA4 Reference Manual Rev 5 08 2017 400 NXP Semiconductors ...