background image

Application Hints

(Continued)

Since the lead frame is solid copper, heat from the die is
readily conducted through the leads to the printed circuit
board copper, which is acting as a heat sink.

For best thermal performance, the ground pins and all the
unconnected pins should be soldered to generous amounts
of printed circuit board copper, such as a ground plane.
Large areas of copper provide the best transfer of heat to the
surrounding air. Copper on both sides of the board is also
helpful in getting the heat away from the package, even if
there is no direct copper contact between the two sides.
Thermal resistance numbers as low as 40˚C/W for the SO
package, and 30˚C/W for the N package can be realized with
a carefully engineered pc board.

Included on the

Switchers Made Simple

design software is

a more precise (non-linear) thermal model that can be used
to determine junction temperature with different input-output
parameters or different component values. It can also calcu-
late the heat sink thermal resistance required to maintain the
regulators junction temperature below the maximum operat-
ing temperature.

Additional Applications

INVERTING REGULATOR

Figure 10

shows a LM2575-12 in a buck-boost configuration

to generate a negative 12V output from a positive input
voltage. This circuit bootstraps the regulator’s ground pin to
the negative output voltage, then by grounding the feedback
pin, the regulator senses the inverted output voltage and
regulates it to −12V.

For an input voltage of 12V or more, the maximum available
output current in this configuration is approximately 0.35A. At
lighter loads, the minimum input voltage required drops to
approximately 4.7V.

The switch currents in this buck-boost configuration are
higher than in the standard buck-mode design, thus lowering

the available output current. Also, the start-up input current
of the buck-boost converter is higher than the standard
buck-mode regulator, and this may overload an input power
source with a current limit less than 1.5A. Using a delayed
turn-on or an undervoltage lockout circuit (described in the
next section) would allow the input voltage to rise to a high
enough level before the switcher would be allowed to turn
on.

Because of the structural differences between the buck and
the buck-boost regulator topologies, the buck regulator de-
sign procedure section can not be used to select the inductor
or the output capacitor. The recommended range of inductor
values for the buck-boost design is between 68 µH and 220
µH, and the output capacitor values must be larger than what
is normally required for buck designs. Low input voltages or
high output currents require a large value output capacitor
(in the thousands of micro Farads).

The peak inductor current, which is the same as the peak
switch current, can be calculated from the following formula:

Where f

osc

= 52 kHz. Under normal continuous inductor

current operating conditions, the minimum V

IN

represents

the worst case. Select an inductor that is rated for the peak
current anticipated.

Also, the maximum voltage appearing across the regulator is
the absolute sum of the input and output voltage. For a −12V
output, the maximum input voltage for the LM2575 is +28V,
or +48V for the LM2575HV.

The

Switchers Made Simple

(version 3.3) design software

can be used to determine the feasibility of regulator designs
using different topologies, different input-output parameters,
different components, etc.

NEGATIVE BOOST REGULATOR

Another variation on the buck-boost topology is the negative
boost configuration. The circuit in

Figure 11

accepts an input

voltage ranging from −5V to −12V and provides a regulated
−12V output. Input voltages greater than −12V will cause the
output to rise above −12V, but will not damage the regulator.

Because of the boosting function of this type of regulator, the
switch current is relatively high, especially at low input volt-
ages. Output load current limitations are a result of the
maximum current rating of the switch. Also, boost regulators
can not provide current limiting load protection in the event of
a shorted load, so some other means (such as a fuse) may
be necessary.

01147515

FIGURE 10. Inverting Buck-Boost Develops −12V

LM1575/LM2575/LM2575HV

www.national.com

20

Summary of Contents for LM1575 Series

Page 1: ...d 10 on the oscillator frequency External shutdown is included featuring 50 A typical standby cur rent The output switch includes cycle by cycle current limit ing as well as thermal shutdown for full...

Page 2: ...red Leads 5 Lead TO 220 T 01147522 Top View LM2575T XX or LM2575HVT XX See NS Package Number T05A 01147523 Top View 01147524 Side View LM2575T XX Flow LB03 or LM2575HVT XX Flow LB03 See NS Package Num...

Page 3: ...Side View LM2575S XX or LM2575HVS XX See NS Package Number TS5B Ordering Information Package NSC Standard High Temperature Type Package Voltage Rating Voltage Rating Range Number 40V 60V 5 Lead TO 22...

Page 4: ...LM2575HVN ADJ 24 Pin M24B LM2575M 5 0 LM2575HVM 5 0 Surface Mount LM2575M 12 LM2575HVM 12 LM2575M 15 LM2575HVM 15 LM2575M ADJ LM2575HVM ADJ 5 Lead TO 263 TS5B LM2575S 3 3 LM2575HVS 3 3 Surface Mount L...

Page 5: ...UT Output Voltage VIN 12V ILOAD 0 2A 3 3 V Circuit of Figure 2 3 267 3 234 V Min 3 333 3 366 V Max VOUT Output Voltage 4 75V VIN 40V 0 2A ILOAD 1A 3 3 V LM1575 LM2575 Circuit of Figure 2 3 200 3 168 3...

Page 6: ...4 11 52 11 52 11 40 V Min Circuit of Figure 2 12 36 12 48 12 48 12 60 V Max VOUT Output Voltage 0 2A ILOAD 1A 12 V LM2575HV 15V VIN 60V 11 64 11 52 11 52 11 40 V Min Circuit of Figure 2 12 42 12 54 12...

Page 7: ...rical Characteristics Specifications with standard type face are for TJ 25 C and those with boldface type apply over full Operating Tempera ture Range Unless otherwise specified VIN 12V for the 3 3V 5...

Page 8: ...tor input and output capacitors can affect switching regulator system performance When the LM1575 LM2575 is used as shown in the Figure 2 test circuit system performance will be as shown in system par...

Page 9: ...s Circuit of Figure 2 Normalized Output Voltage Line Regulation 01147532 01147533 Dropout Voltage Current Limit 01147534 01147535 Quiescent Current Standby Quiescent Current 01147536 01147537 LM1575 L...

Page 10: ...Continued Oscillator Frequency Switch Saturation Voltage 01147538 01147539 Efficiency Minimum Operating Voltage 01147540 01147541 Quiescent Current vs Duty Cycle Feedback Voltage vs Duty Cycle 011475...

Page 11: ...Layout Guidelines As in any switching regulator layout is very important Rap idly switching currents associated with wiring inductance generate voltage transients which can cause problems For minimal...

Page 12: ...tic COUT 330 F 25V Aluminum Electrolytic D1 Schottky 11DQ06 L1 330 H PE 52627 for 5V in 3 3V out use 100 H PE 92108 Adjustable Output Voltage Version 01147509 where VREF 1 23V R1 between 1k and 5k R1...

Page 13: ...the dominate pole pair of the switching regulator loop For stable operation and an acceptable output ripple voltage approximately 1 of the output voltage a value between 100 F and 470 F is recommended...

Page 14: ...For Continuous Mode Operation 01147510 FIGURE 3 LM2575 HV 3 3 01147511 FIGURE 4 LM2575 HV 5 0 01147512 FIGURE 5 LM2575 HV 12 01147513 FIGURE 6 LM2575 HV 15 01147514 FIGURE 7 LM2575 HV ADJ LM1575 LM25...

Page 15: ...Inductor Value 470 H Choose from AIE part 430 0634 Pulse Engineering part PE 53118 or Renco part RL 1961 3 Output Capacitor Selection COUT A The value of the output capacitor together with the induct...

Page 16: ...Capacitor CIN A 100 F aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing To further simplify the buck regulator design procedure National Semiconducto...

Page 17: ...E 92108 RL2444 L150 150 H 67127010 PE 53113 RL1954 L220 220 H 67127020 PE 52626 RL1953 L330 330 H 67127030 PE 52627 RL1952 L470 470 H 67127040 PE 53114 RL1951 L680 680 H 67127050 PE 52629 RL1950 H150...

Page 18: ...eadings because of induced voltages in the scope probe The inductors listed in the selection chart include ferrite pot core construction for AIE powdered iron toroid for Pulse Engineering and ferrite...

Page 19: ...ON OFF pin should be grounded or driven with a low level TTL voltage typically below 1 6V To put the regulator into standby mode drive this pin with a high level TTL or CMOS signal The ON OFF pin can...

Page 20: ...sing a delayed turn on or an undervoltage lockout circuit described in the next section would allow the input voltage to rise to a high enough level before the switcher would be allowed to turn on Bec...

Page 21: ...cessively large RC time constants can cause problems with input voltages that are high in 60 Hz or 120 Hz ripple by coupling the ripple into the ON OFF pin ADJUSTABLE OUTPUT LOW RIPPLE POWER SUPPLY A...

Page 22: ...less than 0 15 EQUIVALENT SERIES INDUCTANCE ESL The pure inductance component of a capacitor see Figure 16 The amount of inductance is determined to a large extent on the capacitor s construction In a...

Page 23: ...y more magnetic flux When an inductor saturates the induc tor appears less inductive and the resistive component domi nates Inductor current is then limited only by the DC resis tance of the wire and...

Page 24: ...5J 3 3 883 LM1575J 5 0 883 LM1575J 12 883 LM1575J 15 883 or LM1575J ADJ 883 NS Package Number J16A 14 Lead Wide Surface Mount WM Order Number LM2575M 5 0 LM2575HVM 5 0 LM2575M 12 LM2575HVM 12 LM2575M...

Page 25: ...5 0 LM2575N 12 LM2575HVN 12 LM2575N 15 LM2575HVN 15 LM2575N ADJ or LM2575HVN ADJ NS Package Number N16A 5 Lead TO 220 T Order Number LM2575T 3 3 LM2575HVT 3 3 LM2575T 5 0 LM2575HVT 5 0 LM2575T 12 LM25...

Page 26: ...oted Continued TO 263 Molded 5 Lead Surface Mount Order Number LM2575S 3 3 LM2575HVS 3 3 LM2575S 5 0 LM2575HVS 5 0 LM2575S 12 LM2575HVS 12 LM2575S 15 LM2575HVS 15 LM2575S ADJ or LM2575HVS ADJ NS Packa...

Page 27: ...easonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness BANNED SUBSTANCE COMPLIANCE National Semiconductor certifies that the products and...

Reviews: