background image

ADC12V170 Evaluation Board User’s Guide 

N

 

- 4 -  

www.national.com 

Rev 0.0

 

3.2 Connecting Power and Signal Sources 

1.  To  power  the  ADC12V170  evaluation  board, 

connect a 5.0V power supply capable of supplying 
up to 500mA to the green power connector labeled 
“+5V”  which  is  located  along  the  bottom  edge  of 
the ADC12V170 evaluation board.   

2.  Use  the  FutureBus  connector  (FB)  to  connect  the 

ADC12V170  evaluation  board  to  the  instrument 
being used to capture the data from the evaluation 
board.  If the WaveVision Digital Interface Board is 
being  used  for  data  capture,  please  consult  the 
WaveVision  User’s  Guide  for  details  on  installing 
and  operating  the  WaveVision  hardware  and 
software system. 

3.  Connect  the  clock  and  signal  inputs  to  the 

CLK_IN_SE  and  AIN_XX  (where  XX  =  HF  or  LF) 
SMA connectors. 

4.0 Functional Description 

4.1 Clock Input 

The  clock  used  to  sample  the  analog  input  should  be 
applied to the CLK_IN_SE SMA connector (if using the 
single-ended clock mode). 

To  achieve  the  best  noise  performance  (best  SNR),  a 
low jitter clock source with total additive jitter less than 
150 fs should be used.  A low jitter crystal oscillator is 
recommended,  but  a  sinusoidal  signal  generator  with 
low phase noise, such as the SMA100A from Rohde & 
Schwarz or the HP8644B (discontinued) from Agilent / 
Hewlett  Packard,  can  also  be  used  with  a  slight 
degradation  in  the  noise  performance.    When  using  a 
low  phase  noise  clock  source,  the  SNR  is  primarily 
degraded  by  the  broadband  noise  of  the  signal 
generator.    The  clock  signal  generator  amplitude  is 
typically  set  to  +19.9  dBm  to  produce  the  highest 
possible  slew  rate,  but  the  SNR  performance  will  be 
impacted  minimally  by  lowering  the  signal  generator 
amplitude  slightly.    Placing  a  bandpass  filter  between 
the  clock  source  and  the  CLK_IN_SE  SMA  connector 
will further improve the noise performance of the ADC 

by filtering out the broadband noise of the clock source.  
All  results  in  the  ADC12V170  datasheet  are  obtained 
with  a  tunable  bandpass filter made by Trilithic, Inc. in 
the clock signal path. 

The  noise  performance  of  the  ADC12V170  can  be 
improved further by making the edge transitions of the 
clock  signal  entering  the  ADC  clock  input  (pin  11, 
CLK+)  very  sharp.    The  ADC12V170  evaluation  board  
is  assembled  with  a  high  speed  buffer  gate 
(NC7WV125K8X,  schematic  reference  designator  U2) 
in the clock input path to provide a sharp clock edge to 
the clock inputs and improve the noise performance of 
the  ADC.    The  amplitude  of  the  clock  signal  from  the 
NC7WV125K8X high speed buffer is 3.3V. 

4.2 Analog Input  

To  obtain  the  best  distortion  results  (best  SFDR),  the 
analog  input  network  on  the  evaluation board must be 
optimized for the signal frequency being applied. 

For analog input frequencies up to 150 MHz, the circuit 
in Figure 2 is recommended.  This is the configuration 
of  the  assembled  ADC12V170LFEB  as  it  is  delivered 
from  the  factory.    For  input  frequencies  above  150 
MHz,  the  circuit  in  Figure  3  is  recommended.    This  is 
the  configuration  of  the  assembled  ADC12V170HFEB 
as it is delivered from the factory.   

A  low  noise  signal  generator  such  as  the  HP8644B  is 
recommended  to  drive  the  signal  input  of  the 
ADC12V170 evaluation board.  The output of the signal 
generator  must  be  filtered  to  suppress  the  harmonic 
distortion produced by the signal generator and to allow 
accurate  measurement  of  the  ADC12V170  distortion 
performance.    A  low  pass  or  a  bandpass  filter  is 
recommended to filter the analog input signal.  In some 
cases, a second low pass filter may be necessary.  The 
bandpass filter on the analog input will further improve 
the  noise  performance  of  the  ADC  by  filtering  the 
broadband  noise  of  the  signal  generator.  Data shown 
in the ADC12V170 datasheet was taken with a tunable 
bandpass  filter  made  by  Trilithic  in  the  analog  signal 
path. 

Summary of Contents for ADC12V170

Page 1: ...N www national com Rev 0 0 October 2007 Evaluation Board User s Guide for ADC12V170 12 Bit 170 MSPS Analog to Digital Converter with LVDS Outputs ...

Page 2: ... 0 0 Figure 1 ADC12V170 Evaluation Board Connector and Jumper Locations Analog Input FIN 150 MHz Single Ended Clock Input 5 0V Power Connector ADC CLK_SEL DF Jumper PD Jumper Clock Buffer Reverse Side Analog Input Network Analog Input FIN 150 MHz FutureBus Connector ...

Page 3: ...quencies greater than 150 MHz 2 ADC12V170LFEB low frequency version for input frequencies less than 150 MHz Please refer to the input circuit configurations described in the Analog Input Section 4 2 of this guide The location and description of the components on the ADC12V170 evaluation board can be found in Figure 1 as well as Section 5 0 Schematic and Section 7 0 Bill of Materials of this user s...

Page 4: ...urther improve the noise performance of the ADC by filtering out the broadband noise of the clock source All results in the ADC12V170 datasheet are obtained with a tunable bandpass filter made by Trilithic Inc in the clock signal path The noise performance of the ADC12V170 can be improved further by making the edge transitions of the clock signal entering the ADC clock input pin 11 CLK very sharp ...

Page 5: ...the ADC12V170 to provide the 1 5V common mode voltage required for the differential analog inputs VIN and VIN The ADC12V170 evaluation board is factory assembled with VRM connected to the transformer center tap through a 49 9Ω resistor to provide the necessary common mode voltage to the differential analog input 4 4 Board Outputs The digitized 12 bit output word from the ADC12V170 evaluation board...

Page 6: ... the first half of the clock period and these lines will carry bit D10 during the second half of the clock period Similarly pins A10 B10 will carry D1 during the first half of the clock period and these pins will carry D0 during the second half of the clock period The DRDY signal which is used to capture the data is also in LVDS format and it is available at pins A4 D4 DRDY on the FutureBus connec...

Page 7: ...ADC12V170 Evaluation Board User s Guide N 7 www national com Rev 0 0 5 0 Evaluation Board Schematic Figure 4 Signals ...

Page 8: ...ADC12V170 Evaluation Board User s Guide N 8 www national com Rev 0 0 5 0 Schematic cont Figure 5 Power Distribution ...

Page 9: ...ADC12V170 Evaluation Board User s Guide N 9 www national com Rev 0 0 6 0 Evaluation Board Layout Figure 6 Layer 1 Signal ...

Page 10: ...ADC12V170 Evaluation Board User s Guide N 10 www national com Rev 0 0 6 0 Evaluation Board Layout cont Figure 7 Layer 2 Ground ...

Page 11: ...ADC12V170 Evaluation Board User s Guide N 11 www national com Rev 0 0 6 0 Evaluation Board Layout cont Figure 8 Layer 3 Power ...

Page 12: ...ADC12V170 Evaluation Board User s Guide N 12 www national com Rev 0 0 6 0 Evaluation Board Layout cont Figure 9 Layer 4 Signal ...

Page 13: ...c_7343 Kemet 15 2 L1 L2 Ferrite Bead Core SMD FERRITE BEAD CORE 4 5X3 2X1 8 Panasonic ECG 16 1 JTAG Jumper 1x8 JUMPER BLOCK USING 8 PIN SIP HEADER Samtec 17 1 PD Jumper 2X2 2X2 JUMPER BLOCK HEADER CUT TO SIZE FROM 2X6 HEADER Samtec 18 1 CLK_SEL DF Jumper 2X4 2X4 JUMPER BLOCK HEADER CUT TO SIZE FROM 2X6 HEADER Samtec 19 1 Shunt PLACE SHUNT ACROSS PINS 7 8 ON CLK_SEL DF JUMPER FCI Electronic 20 1 U1...

Page 14: ...ANTALUM 6 3V 10 sm c_7343 Kemet 15 2 L1 L2 Ferrite Bead Core SMD FERRITE BEAD CORE 4 5X3 2X1 8 Panasonic ECG 16 1 JTAG Jumper 1x8 JUMPER BLOCK USING 8 PIN SIP HEADER Samtec 17 1 PD Jumper 2X2 2X2 JUMPER BLOCK HEADER CUT TO SIZE FROM 2X6 HEADER Samtec 18 1 CLK_SEL DF Jumper 2X4 2X4 JUMPER BLOCK HEADER CUT TO SIZE FROM 2X6 HEADER Samtec 19 1 Shunt PLACE SHUNT ACROSS PINS 7 8 ON CLK_SEL DF JUMPER FCI...

Page 15: ...tain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user 2 A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its sa...

Reviews: