background image

MODEL CHART

Example

CRF2 -W R 0 1T -048 -M20 CRF2-WR01T-048-M20

Series

CRF2

Capacitive level transmitter

Enclosure

W

R

Weatherproof

Remote mount weatherproof housing

Probe

Type

R

C

Rod

Cable

Ground

0

A

U

None included

Attached ground rod (3˝ or 4˝ flange process connection types only)

Unattached ground rod

Process 

Connection

1T

2T

3T

1B

2B

3B

1S

2S

3S

1F

2F

3F

4F

5F

6F

3/4˝ NPT male

1˝ NPT male

1-1/2˝ NPT male

3/4˝ BSPT

1˝ BSPT

1-1/2˝ BSPT

1˝ sanitary clamp

1-1/2˝ sanitary clamp

2˝ sanitary clamp

2˝ 150# flange, 316 SS

2˝ 150# flange, PVC

3˝ 150# flange, 316 SS

3˝ 150# flange, PVC

4˝ 150# flange, 316 SS

4˝ 150# flange, PVC

Probe Length

XXX

Insertion length in inches. Example 048 is 48˝ length. Rod type min: 24˝, max: 144˝; Cable type min: 24˝, max: 360˝

Options

M20 M20 conduit connection with cable gland

OPERATING PRINCIPLE

Capacitance and Dielectrics

Capacitance is the property of two or more conductors to store a charge when there 

is a voltage difference between the conductors. In other words capacitance relates 

the voltage between two conductors and the amount of charge that can be held on 

the conductors (i.e., the number of electrons). Capacitance is measured in Farads. 

Since a Farad of capacitance represents a very large charge storage capacity, 

most capacitance encountered is generally measured in microFarads (µF, 10-6) or 

picoFarads (pF, 10-12). Capacitances encountered in level sensing applications are 

generally in the 10’s or 100’s of pico Farads range.

The material between the conductors affects the capacitance also. Insulating materials 

do not allow free movement of electrons, however in an electric field the molecules 

of these materials will tend to align with the field thus storing energy. This is called 

the dielectric effect and these materials are often referred to as dielectrics. When 

placed between two conductors the energy storage capability of these dielectrics will 

allow more charge to be stored on the conductors for a given voltage difference thus 

increasing the capacitance between the conductors. The ratio of capacitance change 

caused by these dielectrics is referred to as the dielectric constant. Different materials 

have differing dielectric constants and will consequently change the capacitance 

between two conductors more or less depending on the value of this constant. This 

value ranges from 1.0 for a vacuum to over 100 for certain materials. The dielectric 

constant for air is very close to 1.0 and usually assumed to be exactly 1.0.

Capacitive level sensors determine the level of material by changes in probe 

capacitance resulting from the movement of dielectric materials between the probe 

and the reference ground electrode such as a tank wall. Since measuring very small 

capacitance changes (less than 1 pF) can be problematic in industrial environments, 

capacitance level sensing tends to be most effective for materials with a dielectric 

constant greater than 1.2. Since the difference in capacitance is being measured, it is 

also possible to detect the level of two immiscible liquids that have different dielectric 

constants such as oil and water.

Measurement

The CRF2 uses an impulse RF admittance measurement technique to measure 

the probe capacitance. The impulse admittance measurement offers advantages 

over other techniques in that it produces minimal emissions to interfere with other 

communication or instrumentation systems. The CRF2 continuously measures the 

probe capacitance. Using this capacitance measurement, it computes a linear value 

with 0% at the zero calibration value and 100% at the span calibration value. From 

this the output current is computed and generated. Since no assumptions are made 

regarding the relative value of the zero and span calibration capacitances, the output 

can be set to measure from low to high capacitance or high to low capacitance. 

INSTALLATION

Unpacking

Remove the CRF2 from the shipping carton and inspect for damage. If damage is 

found, notify the carrier immediately. 

Materials

The CRF2 may be used to detect level of a variety of materials. Conductive materials 

such as water require an insulated probe for proper operation. When used with a 

conductive material, the material itself must be grounded to the reference ground of the 

CRF2. This may be done through a conductive tank wall or using an optional reference 

ground electrode. Dry non-conductive materials may use either an insulated or 

uninsulated probe. Capacitance level measurement is best applied when the material 

dielectric constant is greater than 1.2. With non-conductive materials, particularly low 

dielectric materials, the probe should be spaced more closely to the reference ground 

to increase the base capacitance and ensure reasonable sensitivity. The limiting factor 

for spacing will be to ensure that material buildup around the probe is avoided. For 

conductive materials this will be less of a concern since the dielectric insulator around 

the probe is the predominant factor in the capacitance changes with level. 

Summary of Contents for CRF2 Series

Page 1: ...cers PVC Flange Option material of flange Capacitance Range 0 to 2000 pF Sensitivity 0 15 pF Minimum Span 8 pF Accuracy 0 5 pF or 0 25 of span whichever is greater Repeatability 0 25 pF or 0 1 of span whichever is greater Temperature Limits Ambient 40 to 185 F 40 to 85 C Process 40 to 250 F 40 to 121 C Pressure Limit 100 psi 6 9 bar Power Requirements 12 to 35 VDC Output Signal 4 to 20 mA or 20 to...

Page 2: ...tant for air is very close to 1 0 and usually assumed to be exactly 1 0 Capacitive level sensors determine the level of material by changes in probe capacitance resulting from the movement of dielectric materials between the probe and the reference ground electrode such as a tank wall Since measuring very small capacitance changes less than 1 pF can be problematic in industrial environments capaci...

Page 3: ...r and tighten the cable gland to protect and seal the connections Electrical Connection See Figure 3 NOTE Installation must be made in accordance with local codes and regulations When fishing wire through the conduit connection do not allow the wire to touch or press on components on the boards Damage to the circuitry may result Make sure that the wire is routed so it will not interfere with the c...

Page 4: ...roximately 4 00 mA Adjust the 4 mA set point by pressing the Zero 4 mA button to decrease the current and the Span 20 mA button to increase the current When complete press both the Zero 4 mA and Span 20 mA buttons simultaneously to exit the calibration mode To calibrate the 20 mA calibration point double click the Span 20 mA button by pressing it twice within 1 5 seconds The milliammeter will indi...

Reviews: