background image

Mantracourt Electronics Limited

 – ICA User Manual   

 

16 

Chapter 5 Trouble Shooting

 

 

1.

 

No Output 

a)

 

Check power supply is present and the correct polarity 

b)

 

Check the output connections are correct with no open circuit connections 

c)

 

Check terminations (ensure there are no dry joints) 

d)

 

Check the sensor is connected (typically reading 350 ohm across  & -) with the power off 

e)

 

Check the Excitation voltage is at 5 V dc for the ICA1-4H & ICA6H (see Table 3.6 for ICA5S & ICA5A) 

f)

 

Check the load is connected and is not open or short circuited 

g)

 

Check Span and Gain calibration 

 

2.

 

Low Output

 

This is when an output is present but not of sufficient magnitude to meet the required value. Remember to allow for 
Tare Weight and ensure it is measured and allowed for in the output from the ICA. 

a)

 

Check power supply is within specified limits (i.e. is not low) 

b)

 

Check the sensor is connected (typically reading 350 ohm across  & -) with the power off 

c)

 

Check the Excitation voltage is at 5 V dc for the ICA1-4H & ICA6H (see Table 3.6 for ICA5S & ICA5A) 

d)

 

Check the calibration  

e)

 

Check the Zero (offset) is correct for the sensor, this too is a common reason for low outputs 

 

3. 

High Output

 

This is when an output is present but higher (in span or zero) than expected. 
High output is not normally a problem. It is most likely to be incorrect connections and as such the output would be 
high and fixed 

a)

 

Check the sensor is connected (typically reading 350 ohm across  & -) with the power off 

b)

 

Check the Excitation voltage is at 5 V dc for the ICA1-4H and 6H (see Table 3.6 for ICA5S & ICA5A)  

c)

 

Check the Zero (offset) 

d)

 

Check the calibration 

 

4. 

Unstable Output 

This is when the output is unstable or varies. The cause could be (a) poor installation or (b) a noisy environment. 

Poor Installation

 -This is when an output is present but higher or lower (in span or zero) than expected: 

a)

 

Check the installation for problems and repair where necessary 

b)

 

Poor termination 

c)

 

High resistance on cable leads 

d)

 

Low insulation impedance 

e)

 

Proximity to High Voltage Equipment – Transformers, Contactors, Motors etc. 

Noisy Environment -

 

a)

 

Check if the source can be found and remove noise 

b)

 

Check the cable shielding and ensure it is correctly installed and terminated 

 

5.

 

Calibration 

This section assumes that the unit is providing an output that is not stuck at top or bottom of the scale. 
(See paragraphs 1-3 if this is the case) 

a)

 

Ensure you are connected to the correct sensor and not to another adjacent unit. 

b)

 

Ensure you have the correct calibration data from the sensor manufacturer. This must include a certified table 
with offset, zero and linearity. 

c)

 

Ensure you have the calibration set-up correctly installed i.e. mV source and output as required. 

d)

 

Ensure the temperature and other environmental parameters are within specification and where necessary 
taken into account when calibrating should such parameters have an effect on the calibration. 

 

Summary of Contents for ICA1H

Page 1: ...ICA User Manual ICA ICA Embedded Strain Gauge Analogue Amplifiers...

Page 2: ...nt Resistance Formula ICA4 and ICA5 9 Table 2 1 The ICA H S Cable Data 10 Chapter 3 Calculating Offset and Gain Resistor Values 11 Calculating the offset resistor values 11 Calculating the gain resist...

Page 3: ...5 mV V and greater than 10 mV V are possible As supplied they are optimised to 2 5 mV V This range covers most but not all strain gauges Sensitivity adjustment SPAN is achieved by a combination of ch...

Page 4: ...ure and protected Figure 2 1 Dimensions The module is designed to fit in the strain gauge pocket Use the 2 1mm hole to secure the unit The mounting hole will accept an M2 screw or American equivalent...

Page 5: ...r the ICA1H ICA2H The strain gauge cable should be attached to the solder pads as illustrated For most applications 3 wire un shielded field wiring is quite adequate For best EMC performance use the c...

Page 6: ...e cable should be attached to the solder pads as illustrated For most applications 3 wire un shielded connections for field wiring is quite adequate For best EMC performance use the connections shown...

Page 7: ...onitor connected to the loop see the Output Shunt Resistance Formula at the end of this chapter Figure 2 7 Connection Details for the ICA4H Source mode Figure 2 8 Connection Details for the ICA4H Sink...

Page 8: ...7 The ICA4H can be used with three wire cabling in both sink and source mode The only difference between the two modes is whether the common end of the load is connected to the positive of the PSU si...

Page 9: ...ower signal level requires more gain from the ICA5 to compensate leading to a degradation in performance with regards to temperature stability and noise performance Impedances greater than 1000 ohms a...

Page 10: ...luding the wiring resistance for low supply voltage operation of the ICA4H and ICA5 Alternatively by transposing the formula the minimum supply voltage for a given shunt resistance can be determined I...

Page 11: ...K Farnell 585 646 Individually shielded twisted multi pair cable 7 0 25 mm 3 pair Tinned copper drain Individually shielded in polyester tape Diameter 8 1 mm Capacitance m core to core 98 pF core to s...

Page 12: ...in resistor values The ICA range of strain gauge amplifiers are supplied un calibrated but optimised for a sensitivity of 2 5 mV V To accommodate other sensitivities the gain resistor Rgain shown in t...

Page 13: ...1 40000 37 2 1 1105 Use preferred value 1k1 Example 3 ICA3H no offset 2 5 mV V required sensitivity at 5 V output Gain constant Required output Maximum output 372 2 5 5 10 74 5 Resistor constant 1 40...

Page 14: ...s the sensitivity of the load cell in mV V Vexc is the excitation voltage in volts and Z is the load cell impedance in ohms e g For a 2 5 mV V 1000 ohm load cell R2 222 17 k ohms use 220 k nearest E24...

Page 15: ...l 14 Offset Resistor R1 vs Load Cell Impedance The following table gives the value of R1 for various load cell impedances and 2 FS and 4 FS trim Load Cell Impedance 2 FS 4 FS 350 Ohms 30k n a 700 Ohms...

Page 16: ...Details for Calibration 1 Apply the known low calibration conditions weight force or mV V This may be zero if required and using the Z potentiometer Zero set the output to the relevant low level depe...

Page 17: ...ould be high and fixed a Check the sensor is connected typically reading 350 ohm across output with the power off b Check the Excitation voltage is at 5 V dc for the ICA1 4H and 6H see Table 3 6 for I...

Page 18: ...a If the adjustment cannot reach the maximum output desired then check the tare is not too high b If the potentiometer does not alter the output the unit must be repaired remove from service c It is...

Page 19: ...overdue accounts and that a strict interpretation of our conditions of trading invalidates warranty claims where late payment has occurred Please refer to the RMA Form Return Material Authorization co...

Page 20: ...dentified as SPAN It relates to the proportional output to the sensor input Calibration of the ICA is determined by setting the Gain Span and Offset Zero The amount of amplification used in an electri...

Page 21: ...force exerted on it be it pressure torque or load The ICA is designed to convert this change in the resistance of the Strain Gauge to a proportional electrical signal Strain Gauge Amplifier The ICA is...

Page 22: ...tal current 22mA Measurement Parameter Minimum Typical Maximum Units Notes Bridge Excitation 4 90 5 5 10 volts Bridge Impedance 350 1000 5000 ohms Bridge Sensitivity 0 5 2 5 50 mV V Note 1 Output load...

Page 23: ...surement Parameter Minimum Typical Maximum Units Notes Bridge Excitation 4 90 5 5 10 volts Bridge Impedance 350 1000 5000 ohms Bridge Sensitivity 0 5 2 5 50 mV V Note 1 Output load 5000 ohms Bandwidth...

Page 24: ...ent Parameter Minimum Typical Maximum Units Notes Bridge Excitation 4 90 5 5 10 volts Bridge Impedance 350 1000 5000 ohms Bridge Sensitivity 0 5 2 5 50 mV V Note 1 Output load 5000 ohms Bandwidth DC 1...

Page 25: ...rement Parameter Minimum Typical Maximum Units Notes Bridge Excitation 4 90 5 5 10 volts Bridge Impedance 350 1000 5000 ohms Bridge Sensitivity 0 5 2 5 150 mV V Note 1 Output load 900 ohms Note 2 Band...

Page 26: ...stment 8 FR Linearity 0 02 FR Temperature stability Zero Temperature Stability 0 001 0 005 FR C At 2 5 mV V Span Temperature Stability 0 007 0 014 FR C At 2 5 mV V FR Full Range 16 mA Note 1 1000 ohm...

Page 27: ...1000 Hz Zero adjustment 2 FR Note 4 Span adjustment 8 FR Linearity 0 02 FR Temperature stability Zero Temperature Stability 0 001 0 005 FR C At 2 5 mV V Span Temperature Stability 0 007 0 014 FR C At...

Page 28: ...ny warm up time Note 2 Not including excitation current e g when connected to a 350 ohm load cell excitation current 5 350 14 mA Total current 22 mA Measurement FR Full Range 10 V Note 1 Set by calibr...

Page 29: ...nformity with the following relevant Union harmonisation legislation LVD directive 2014 35 EU EMC directive 2014 30 EU RoHS directive 2011 65 EU Based on the following harmonised standards EN 61326 1...

Page 30: ...Mantracourt Electronics Limited ICA User Manual 29...

Page 31: ...Mantracourt Electronics Limited ICA User Manual 30...

Page 32: ...Manual Applies To ICA Product Range Part Number 517 936 Issue Number 01 00 Dated 19th January 2018 In the interests of continued product development Mantracourt Electronics Limited reserves the right...

Reviews: