background image

12

dc2042af

DEMO MANUAL DC2042A

APPLICATION INFORMATION

LTC3105: SUPPLIED BY DIODE VOLTAGE DROP IN 

4mA TO 20mA LOOP

The LTC3105 4mA to 20mA loop, diode voltage drop-

powered  energy  harvester  is  selected  by  installing  the 

power selection jumper, JP3. The PGOOD signal, PGOOD_

LTC3105, can be routed to the Dust Header by installing 

jumper JP7. The PGOOD_LTC3105 signal is an open-drain 

output. The pull-down is disabled at the beginning of the 

first sleep event after the output voltage has risen above 

90% of its regulation value. PGOOD_LTC3105 remains 

asserted until VOUT drops below 90% of its regulation 

value at which point PGOOD_LTC3105 will pull low. The 

pull-down is also disabled while the IC is in shutdown or 

start-up mode. The Dust Eterna board will switch from 

battery power to energy harvester power whenever the 

PGOOD signal is high (>1.4V). Again a resistor divider is 

generated by the pull-up resistor R23 on the DC2042A 

and  R4,  the  pull-down  resistor  on  the  DC9003A-A  or 

DC9003A-B. Provided that R4 is changed as described 

above to 5.1MΩ, the voltage seen by the analog switch 

will be sufficient to register as a “Logic 1” and switch the 

Mote or Manager from the battery to the energy harvested 

source.
If  the  application  would  benefit  from  a  wider  PGOOD 

hyteresis window than the LTC3105 provides (sleep to 

V

OUT

 minus 10%), please refer to the above section for a 

complete operational description of and how to use the 

independent PGOOD signal (PGOOD_LTC3459), shown 

in Figure 12, generated by the LTC2935-2 and available 

on JP8.

The PGOOD_LTC3459 signal is always used to switch the 

output voltage on the Header.

 Some loads do not like to 

see a slowly rising input voltage. Switch Q3 ensures that 

VSUPPLY and VMCU on the headers are off until the energy 

harvested output voltage is high enough to power the load. 
The PGOOD_LTC3459 signal can be used in place of any 

of the PGOOD signals generated by the harvester circuits.
The optional components shown on the schematic are not 

populated for a standard assembly. The function of R22 and 

Q2 is to generate a short PGOOD pulse that will indicate 

when the output capacitor is charged to its maximum value. 

The short pulse occurs every time the output capacitor 

charges up to the “output sleep threshold”, which for a 

3.3V output is 3.312V. By populating these components 

the application can use this short pulse as a sequence timer 

to step through the program sequence or as an indication 

of when it can perform energy intensive functions, such as 

a sensor read or a wireless transmission and/or receive, 

knowing precisely how much charge is available in the 

output capacitors. When this optional circuit is not used, 

the amount of charge in the output capacitors is anywhere 

between the maximum (C

OUT

 • V

OUT_SLEEP

) to ten percent 

low. In the case where the energy harvesting source can 

support the average load continuously, this optional circuit 

is not needed. 

Figure 10. Detailed Schematic of LTC3105 4mA to 20mA Loop, Diode Voltage Drop Energy Harvester

Summary of Contents for LTC2935-2

Page 1: ...on a chip Energy Micro STK development kit L LT LTC LTM Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation All other trademarks are the property of their...

Page 2: ...EY locations that guarantee proper interconnect of compatible adaptor boards J1 Energy Micro STK Header does not have a KEY J2 Dust Mote Header has a KEY in position 5 J3 Horizontal Transducer Header...

Page 3: ...serve the voltage on VM1 and VM2 The voltage on VM1 should be approximately 5 77V and on VM2 should be 3 3V 12 UseVM3toobservethevoltageonJP5 2 Thevoltage should be equal to the same level observed on...

Page 4: ...NUAL DC2042A QUICK START PROCEDURE Figure 2 VMCU Power Switchover Test Setup Test Steps 2 to 5 Figure 3 Solar Circuitry Test Setup Test Steps 6 to 9 Proper Measurement Equipment Setup for DC2042A Sola...

Page 5: ...ctric Circuitry Test Setup Test Steps 10 to 13 Proper Measurement Equipment Setup for DC2042A Piezoelectric Circuit Testing Figure 5 4mA to 20mA Loop Circuitry Test Setup Test Steps 14 to 17 Proper Me...

Page 6: ...6 dc2042af DEMO MANUAL DC2042A QUICK START PROCEDURE Figure 6 TEG Powered Circuitry Test Setup Test Steps 18 to 22 Proper Measurement Equipment Setup for DC2042A TEG Circuit Testing...

Page 7: ...2af DEMO MANUAL DC2042A QUICK START PROCEDURE Figure 7a DC2042A Top Assembly Drawing Figure 7b DC2042A Bottom Assembly Drawings J3 HORIZONTAL TRANSDUCER HEADER J4 VERTICAL TRANSDUCER HEADER J2 DUST EH...

Page 8: ...is lost It will be charged up to the maximum VAUX clamp voltage typically 5 25V The 100 F capacitors have a voltage coefficient of 0 47 at 5 25V Caution Only JP9 or JP10 may be connected at any one ti...

Page 9: ...tal insert in header to ensure proper in sertion location and orientation No electrical connection Pin 6 VBAT Raw battery voltage from to DUST board Pin 7 RSVD Reserved for future use no connection on...

Page 10: ...ween the 3 15V and 2 25V levels The optional components R1 R4 Q1 and C5 shown on the schematic are not populated for a standard assembly The function of R1 R4 Q1 and C5 is to generate a short PGOOD pu...

Page 11: ...o be changed so the turn on threshold is below the PGOOD_LTC3108 turn on threshold of 3 053V For example by changing R36 to a 0 jumper and R5 to NOPOP the turn on threshold for Q3 will be 2 99V ris in...

Page 12: ...mplete operational description of and how to use the independent PGOOD signal PGOOD_LTC3459 shown in Figure 12 generated by the LTC2935 2 and available on JP8 ThePGOOD_LTC3459signalisalwaysusedtoswitc...

Page 13: ...the LTC2935 2 was used to generate a PGOOD function with an adjustable hysteresis window TheNOPOPand0 resistorsaroundtheLTC2935 2allow forcustomizationofthePGOODthresholdsandhysteresis window By usin...

Page 14: ...14 dc2042af DEMO MANUAL DC2042A APPLICATION INFORMATION Figure 11 Detailed Schematic of LTC3459 Supplied by a Solar Cell Figure 12 Detailed Schematic of PGOOD_LTC3459 Circuit Using LTC2935 2...

Page 15: ...se as needed when the light level is insufficient to power the wireless sensor node continuously The scope photos show in Figures 14 through 17 how the supply voltage on theDC9003A Bisswitchedbetweent...

Page 16: ...6 dc2042af DEMO MANUAL DC2042A APPLICATION INFORMATION Figure 14 DC2042A LTC3459 Operation at 100 lux with Indy4100 Solar Panel Figure 15 DC2042A LTC3459 Operation at 210 lux with Indy4100 Solar Panel...

Page 17: ...7 dc2042af DEMO MANUAL DC2042A APPLICATION INFORMATION Figure 16 DC2042A LTC3459 Operation at 275 lux with Indy4100 Solar Panel Figure 17 DC2042A LTC3459 Operation at 300 lux with Indy4100 Solar Panel...

Page 18: ...L1 OPT INDUCTOR 22 H 0 70A 185m 4 8mm x 4 8mm WURTH 744043220 19 1 L2 INDUCTOR 10 H 560mA 0 205 3 8mm x 3 8mm WURTH 744031100 20 0 L2 OPT INDUCTOR 10 H 650mA 0 205 3 8mm x 3 8mm SUMIDA CDRH3D18NP 100...

Page 19: ...CHIP 4 99k 1 1 16W 0402 100ppm C VISHAY CRCW04024K99FKED 6 0 R2 R7 R9 R10 R11 R12 R14 R15 R18 R31 R32 R33 R36 RES CHIP 0402 NOPOP 7 0 R4 OPT RES CHIP 50 5k 1 1 16W 0402 100ppm C VISHAY CRCW040250K5FKE...

Page 20: ...20 dc2042af DEMO MANUAL DC2042A SCHEMATIC DIAGRAM...

Page 21: ...ogy Corporation is believed to be accurate and reliable However noresponsibilityisassumedforitsuse LinearTechnologyCorporationmakesnorepresenta tion that the interconnection of its circuits as describ...

Page 22: ...DING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE EXCEPT TO THE EXTENT OF THIS INDEMNITY NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT SPECIAL INCIDENTAL OR CONS...

Reviews: