background image

LT8330

9

8330fa

For more information 

www.linear.com/LT8330

applicaTions inForMaTion

While in Burst Mode operation the current limit of the 

switch is approximately 240mA resulting in the output 

voltage ripple shown in Figure 2. Increasing the output 

capacitance will decrease the output ripple proportionally. 

As the output load ramps upward from zero the switch-

ing frequency will increase but only up to the fixed 2MHz 

defined by the internal oscillator as shown in Figure 1. The 

output load at which the LT8330 reaches the fixed 2MHz 

frequency varies based on input voltage, output voltage, 

and inductor choice.

Figure 2. Burst Mode Operation

PROGRAMMING INPUT TURN-ON AND TURN-OFF 

THRESHOLDS WITH EN/UVLO PIN 

The EN/UVLO pin voltage controls whether the LT8330 is 

enabled or is in a shutdown state. A 1.6V reference and a 

comparator A6 with built-in hysteresis (typical 80mV) allow 

the user to accurately program the system input voltage 

at which the IC turns on and off (see the Block Diagram). 

The typical input falling and rising threshold voltages can 

be calculated by the following equations: 
  V

IN(FALLING,UVLO(–)) 

= 1.60 

 (R3+R4)/R4

  V

IN(RISING, UVLO(+))

 = 1.68 

 (R3+R4)/R4

V

IN

 current is reduced below 1µA when the EN/UVLO pin 

voltage is less than 0.2V. The EN/UVLO pin can be con-

nected directly to the input supply V

IN

 for always-enabled 

operation. A logic input can also control the EN/UVLO pin.
When operating in Burst Mode operation for light load 

currents, the current through the R3 and R4 network can 

easily be greater than the supply current consumed by the 

LT8330. Therefore, R3 and R4 should be large enough to 

minimize their effect on efficiency at light loads.

INTV

CC

 REGULATOR

A low dropout (LDO) linear regulator, supplied from V

IN

produces a 3V supply at the INTV

CC

 pin. A minimum 1µF 

low ESR ceramic capacitor must be used to bypass the 

INTV

CC

 pin to ground to supply the high transient currents 

required by the internal power MOSFET gate driver.
No additional components or loading is allowed on this 

pin. The INTV

CC

 rising threshold (to allow soft start and 

switching) is typically 2.6V. The INTV

CC

 falling threshold 

(to stop switching and reset soft start) is typically 2.5V.   

DUTY CYCLE CONSIDERATION

The LT8330 minimum on-time, minimum off-time and 

switching frequency (f

OSC

) define the allowable minimum 

and maximum duty cycles of the converter (see Minimum 

On-Time, Minimum Off-Time, and Switching Frequency 

in the Electrical Characteristics table).
Minimum Allowable Duty Cycle =  

 

Minimum On-Time

(MAX)

 

 f

OSC(MAX)

Maximum Allowable Duty Cycle =  

 1 – Minimum Off-Time

(MAX)

 

 f

OSC(MAX)

The required switch duty cycle range for a Boost converter 

operating in continuous conduction mode (CCM) can be 

calculated as:
  D

MIN

 = 1– V

IN(MAX)

/(V

OUT

 + V

D

  D

MAX

 = 1– V

IN(MIN)

/(V

OUT

 + V

D

)

where V

D

 is the diode forward voltage drop. If the above 

duty cycle calculations for a given application violate the 

minimum and/or maximum allowed duty cycles for the 

LT8330, operation in discontinuous conduction mode 

(DCM) might provide a solution. For the same V

IN

 and 

V

OUT

 levels, operation in DCM does not demand as low a 

duty cycle as in CCM. DCM also allows higher duty cycle 

operation than CCM. The additional advantage of DCM is 

the removal of the limitations to inductor value and duty 

cycle required to avoid sub-harmonic oscillations and the 

right half plane zero (RHPZ). While DCM provides these 

benefits, the trade-off is higher inductor peak current, lower 

available output power and reduced efficiency.

5µs/DIV

V

OUT

5mV/DIV

I

L

200mA/DIV

8330 F02

Summary of Contents for LT8330

Page 1: ...t area efficient solutions 48V Boost Converter Applications n n 3V to 40V Input Voltage Range n n Ultralow Quiescent Current and Low Ripple Burst Mode Operation IQ 6µA n n 1A 60V Power Switch n n Positive or Negative Output Voltage Programming with a Single Feedback Pin n n Fixed 2MHz Switching Frequency n n Accurate 1 6V EN UVLO Pin Threshold n n Internal Compensation and Soft Start n n Low Profi...

Page 2: ...40 C to 150 C Consult LTC Marketing for parts specified with wider operating temperature ranges Consult LTC Marketing for information on nonstandard lead based finish parts For more information on lead free part marking go to http www linear com leadfree For more information on tape and reel specifications go to http www linear com tapeandreel Some packages are available in 500 unit reels through ...

Page 3: ...old Falling Stop Switching l 1 556 1 60 1 644 V EN UVLO Pin Current VEN UVLO 1 6V l 40 40 nA Soft Start Soft Start Time VIN 24V 1 ms Note 1 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime Note 2 INTVCC cannot be externally driven No ...

Page 4: ...V 8330 G02 VIN 24V JUNCTION TEMPERATURE C 50 25 0 25 50 75 100 125 150 175 1 90 1 92 1 94 1 96 1 98 2 00 2 02 2 04 2 06 2 08 2 10 SWITCHING FREQUENCY MHz 8330 G04 VIN V 0 5 10 15 20 25 30 35 40 45 1 85 1 90 1 95 2 00 2 05 2 10 2 15 SWITCHING FREQUENCY MHz 8330 G05 VIN 24V FBX VOLTAGE V 0 8 0 4 0 0 0 4 0 8 1 2 1 6 0 25 50 75 100 125 NORMALIZED SWITCHING FREQUENCY 8330 G06 VIN 12V DUTY CYCLE 0 20 40...

Page 5: ...2 50 3 75 5 00 6 25 7 50 8 75 10 00 V IN PIN CURRENT µA 8330 G10 VIN 12V JUNCTION TEMPERATURE C 50 25 0 25 50 75 100 125 150 175 600 650 700 750 800 850 900 950 1000 V IN PIN CURRENT µA 8330 G11 VIN 12V VOUT 48V FRONT PAGE APPLICATION LOAD CURRENT mA 0 10 20 30 40 50 0 0 5 1 0 1 5 2 0 2 5 SWITCHING FREQUENCY MHz 8330 G12 VIN 12V VOUT 48V ILOAD 135mA 1µs DIV FRONT PAGE APPLICATION VSW 20V DIV IL 50...

Page 6: ...ces the switching frequency during start up and fault conditions when FBX is close to GND GND Ground Connection for the LT8330 The DFN pack age has the best thermal performance due to an exposed pad Pin 9 on the bottom of the package This exposed pad must be soldered to a ground plane Pin 5 of the DFN package and Pin 2 of the TSOT package should also be connected to a ground plane The ground plane...

Page 7: ...ACK INTVCC UVLO OSCILLATOR 2MHz SWITCH LOGIC BURST DETECT A5 A2 A1 ERROR AMP ERROR AMP SLOPE VC SLOPE SOFT START 1 6V FBX VOUT R2 R1 0 8V UVLO A3 A4 DRIVER M1 ILIMIT RSENSE PWM COMPARATOR INTVCC TJ 170 C A6 1 68V 1 6V EN UVLO INTERNAL REFERENCE UVLO VIN CIN SW R4 OPT R3 OPT VIN COUT CVCC D L VOUT UVLO 3V REGULATOR M2 ...

Page 8: ...fier A2 performs non inverting amplification from FBX to VC If the EN UVLO pin voltage is below 1 6V the LT8330 entersundervoltagelockout UVLO andstopsswitching When the EN UVLO pin voltage is above 1 68V typical the LT8330 resumes switching If the EN UVLO pin volt age is below 0 2V the LT8330 only draws 1µA from VIN To optimize efficiency at light loads the LT8330 operates in Burst Mode operation...

Page 9: ... at light loads INTVCC Regulator A low dropout LDO linear regulator supplied from VIN produces a 3V supply at the INTVCC pin A minimum 1µF low ESR ceramic capacitor must be used to bypass the INTVCC pin to ground to supply the high transient currents required by the internal power MOSFET gate driver No additional components or loading is allowed on this pin The INTVCC rising threshold to allow sof...

Page 10: ...ram the soft start function controls the ramp of the power switch current by controlling the ramp of VC through M2 This allowstheoutputcapacitortobechargedgraduallytoward its final value while limiting the start up peak currents Figure 3 shows the output voltage and supply current for the first page Typical Application It can be seen that both the output voltage and supply current come up graduall...

Page 11: ...eramic input capacitor combined with trace or cable inductance forms a high quality under damped tank cir cuit If the LT8330 circuit is plugged into a live supply the input voltage can ring to twice its nominal value possibly exceeding the LT8330 s voltage rating This situation is easily avoided see Application Note 88 Output Capacitor and Output Ripple Low ESR equivalent series resistance capacit...

Page 12: ...ommendedforusewiththeLT8330 Low leakage Schottky diodes are necessary when low Figure 4 Suggested Layout a ThinSOT b DFN quiescentcurrentisdesiredatlowloads Thediodeleakage appears as an equivalent load at the output and should be minimized ChooseSchottkydiodeswithsufficientreverse voltage ratings for the target applications Table 3 Recommended Schottky Diodes PART NUMBER AVERAGE FORWARD CURRENT m...

Page 13: ...igure 5 This topology allows for the input to be higher equal or lower than the desired output voltage The conversion ratio as a function of duty cycle is VOUT VD VIN D 1 D in continuous conduction mode CCM In a SEPIC converter no DC path exists between the input and output This is an advantage over the boost converter for applications requiring the output to be disconnected from the input source ...

Page 14: ...oop gain the converter will approach voltage mode Accepting larger values of IL allows the use of low in ductances but results in higher input current ripple and greater core losses It is recommended that c falls in the range of 0 2 to 0 6 Due to the current limit of its internal power switch the LT8330 should be used in a SEPIC converter whose maximum output current IO MAX is less than the output...

Page 15: ...erter SEPIC Converter Selecting the DC Coupling Capacitor The DC voltage rating of the DC coupling capacitor CDC as shown in Figure 5 should be larger than the maximum input voltage VCDC VIN MAX CDC has nearly a rectangular current waveform During the switch off time the current through CDC is IIN while approximately IO flows during the on time The RMS rating of the coupling capacitor is determine...

Page 16: ...produced by the ripple current of L2 flowing through the ESR and bulk capacitance of the output capacitor VOUT P P IL2 ESRCOUT 1 8 f COUT After specifying the maximum output ripple the user can select the output capacitors according to the preceding equation The ESR can be minimized by using high quality X5R or X7R dielectric ceramic capacitors In many applications ceramic capacitors are sufficien...

Page 17: ...35068 C3 MURATA GRM32ER71H475k C4 4 7pF R3 1M R4 287k R1 R2 210mA AT VIN 8V 320mA AT VIN 12V 450mA AT VIN 16V 8330 TA03 4 7µF 4 7µF VOUT VIN SW FBX GND EN UVLO LT8330 3V TO 6V VIN 48V VCC INT L1 0 68µH D1 C1 C2 1µF C3 D1 NXP PMEG6010CEJ L1 WÜRTH WE MAPI 3012 744383340068 C3 MURATA GRM32ER71H475k R1 1M R2 34 8k 12mA AT VIN 3V 13mA AT VIN 5V 14mA AT VIN 6V 8330 TA04 Efficiency Efficiency Efficiency ...

Page 18: ...330 TA05 4 7µF 71 5k 4 7µF 1µF 4 7pF C5 1µF L2 6 8µH 1M 287k VOUT VIN SW FBX GND EN UVLO LT8330 8V TO 30V L1 6 8µH VIN 24V VCC INT 1M D1 C1 C2 C3 D1 NXP PMEG6010CEJ L1 WÜRTH WE TDC 8038 74489440068 C3 MURATA GRM32ER71H475k R1 R2 2 C4 R3 R4 160mA AT VIN 8V 200mA AT VIN 12V 250mA AT VIN 24V 250mA AT VIN 30V 8330 TA06 Efficiency Efficiency BOOST VOUT 24V VIN 3V VIN 5V VIN 6V LOAD CURRENT mA 0 4 8 12 ...

Page 19: ... 280mA AT VIN 24V 280mA AT VIN 36V 8330 TA07 4 7µF 464k 4 7µF 1µF 4 7pF C5 1µF L1 2 7µH L2 2 7µH VOUT VIN SW FBX GND EN UVLO LT8330 4V TO 16V VIN 5V VCC INT 1M D1 C1 C2 C3 D1 NXP PMEG6010CEJ L1 WÜRTH WE TDC 8018 74489430027 C3 MURATA GRM21BR71C475k R1 R2 C4 R3 1M R4 806k 280mA AT VIN 4V 300mA AT VIN 5V 380mA AT VIN 12V 380mA AT VIN 16V 8330 TA08 Efficiency Efficiency SEPIC VOUT 12V VIN 4V VIN 12V ...

Page 20: ...030 472MR C3 MURATA GRM21BR71C475k R1 R2 C4 R3 R4 L2 4 7µH L1 4 7µH 170mA AT VIN 4V 270mA AT VIN 12V 280mA AT VIN 24V 280mA AT VIN 36V 8330 TA10 191k 4 7µF 1µF 4 7pF C5 1µF L1 2 7µH L2 2 7µH 1M 806k VOUT VIN SW FBX GND EN UVLO LT8330 4V TO 16V VIN 5V VCC INT 1M D1 C1 C2 C3 4 7µF D1 NXP PMEG6010CEJ L1 WÜRTH WE TDC 8018 74489430027 C3 MURATA GRM21BR71C475k R1 R2 C4 R3 R4 280mA AT VIN 4V 300mA AT VIN...

Page 21: ...SOLDER PLATED 6 SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 0 40 0 10 BOTTOM VIEW EXPOSED PAD 0 56 0 05 2 SIDES 0 75 0 05 R 0 115 TYP R 0 05 TYP 2 15 0 05 2 SIDES 3 00 0 10 2 SIDES 1 4 8 5 PIN 1 BAR TOP MARK SEE NOTE 6 0 200 REF 0 0 05 DDB8 DFN 0905 REV B 0 25 0 05 0 50 BSC PIN 1 R 0 20 OR 0 25 45 CHAMFER 0 25 0 05 2 20 0 05 2 SIDES RECOMMENDED SOLDER PAD PI...

Page 22: ... 0 50 REF PIN ONE ID NOTE 1 DIMENSIONS ARE IN MILLIMETERS 2 DRAWING NOT TO SCALE 3 DIMENSIONS ARE INCLUSIVE OF PLATING 4 DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR 5 MOLD FLASH SHALL NOT EXCEED 0 254mm 6 JEDEC PACKAGE REFERENCE IS MO 193 3 85 MAX 0 62 MAX 0 95 REF RECOMMENDED SOLDER PAD LAYOUT PER IPC CALCULATOR 1 4 MIN 2 62 REF 1 22 REF S6 Package 6 Lead Plastic TSOT 23 Reference LTC D...

Page 23: ...e and reliable However noresponsibilityisassumedforitsuse LinearTechnologyCorporationmakesnorepresenta tion that the interconnection of its circuits as described herein will not infringe on existing patent rights Revision History REV DATE DESCRIPTION PAGE NUMBER A 03 16 Corrected VIN Quiescent Current Corrected Typographic Errors 3 2 22 23 ...

Page 24: ...SD 1µA ThinSOT Package LT1935 2A ISW 40V 1 2MHz High Efficiency Step Up DC DC Converter VIN 2 3V to 16V VOUT MAX 38V IQ 3mA ISD 1µA ThinSOT Package LT3467 1 1A ISW 1 3MHz High Efficiency Step Up DC DC Converter VIN 2 4V to 16V VOUT MAX 40V IQ 1 2mA ISD 1µA ThinSOT 2mm 3mm DFN Packages LT3580 2A ISW 42V 2 5MHz High Efficiency Step Up DC DC Converter VIN 2 5V to 32V VOUT MAX 42V IQ 1mA ISD 1µA 3mm 3...

Reviews: