background image

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 476 

1.25MHZ 3A PEAK SWITCH CURRENT MONOLITHIC STEP-DOWN CONVERTER

 

LT1765EFE 

DESCRIPTION  

Demonstration circuit 476 is a 1.25MHz 3A monolithic 
step-down DC/DC switching converter using the 
LT1765EFE. The LT1765 features fast switching speed, 
a 3A internal power switch, and a wide input voltage 
range, making it a versatile and powerful IC that fits 
easily into space-constrained applications. The con-
stant 1.25MHz switching frequency allows for the use 
of tiny, surface mount external components. The cur-
rent-mode control topology yields fast transient re-
sponse and good loop stability, requiring a minimum 
number of external compensation components and 
allowing the use of ceramic input and output capaci-
tors. The low R

DS(ON)

 

internal power switch (0.09

maintains high efficiencies (as high as 90%) over a 
wide range of input voltages and loads. Its 15µA shut-
down current (activated via the SHDN pin) extends 
battery life. The wide V

IN 

range of the LT1765 allows 

step-down configurations from 3V to 25V

 

input. Syn-

chronization of switching frequencies up to 2MHz is 
possible. 

The demonstration circuit is designed to provide either 
3.3V at 2A or 5V at 2A output, from a 7V–25V input or 

4.7V–25V

 input, respectively, covering the common 

values used in cable modems, handhelds, automotive, 
and desktop computer applications. The 5V or 3.3V 
output voltage is jumper selectable.  

This board is designed for applications that require 2A 
of load current from a wide input voltage range plus 
simplicity, small circuit size, and low component 
count. The use of ceramic capacitors in this circuit not 
only demonstrates small size and low cost, but the 
advantage of current-mode control in step-down ap-
plications with a simple compensation network and a 
feedforward capacitor for more rugged stability and 
excellent transient response. 

Design files for this circuit board are available. Call 
the LTC factory. 

                                                     

Higher input voltages may pulse-skip due to minimum on-time restrictions. 

Compensation component changes may be necessary to optimize pulse-
skipping during high-temperature, high-voltage conditions and maintain 
control of switch current. 

 

Figure 1.

 

Demonstration Circuit 476 

 

 

1

 

Reviews: