background image

15

dc2518af

DEMO MANUAL DC2518A

ADVANCED DEMO BOARD OPERATIONS

To minimize these errors, one can choose REFP as the 

positive reference supply and use 0.1% tolerance resistors. 

The reference is accurate to within a few millivolts of the 

nominal 1.232V value. To reduce the error introduced by 

the I

SENSEM

 current, divider resistor values must be cho-

sen to have a low Thevenin resistance while not drawing 

more than 100μA from the REFP pin. The divided down rail 

voltage is sensed across resistor R1. The resistors divide 

the –12V down by 10k/(10k+140k) or 15. This is reflected 

in the scale factor in the LTpowerPlay GUI. 
To eliminate REFP and V

SENSEM

 pin current errors, the –48V 

channel (CH3) uses a ground-referenced op-amp circuit 

to measure the negative rail voltage. See Figure 14. The 

LTC6015 op-amp has input common mode range down 

to GND. Attaching a resistor from the negative supply to 

the inverting input and corresponding feedback resistor 

allows the circuit to “touch” highly negative nodes while 

providing a single-ended low impedance output to a 

V

SENSEP

 input. Components R2/C2 set the low frequency 

anti-aliasing filter to 1.59kHz. The time constant 100μs 

establishes the response time to over- and under-voltage 

conditions on the –48V output. 

Output Current Sensing Schemes

The output current on each channel of the DC2518A demo 

board uses a 50mΩ sense resistor. This board uses a 

variety of sensing schemes: IMON, current sense ampli-

fier, and op-amp with voltage-translating transistor. Each 

of the channels allows the user to try different sensing 

methods. Zero ohm jumpers select between one or the 

other method so that you can understand the trade-offs 

of cost versus accuracy.
Each channel’s output has a pre-load resistor that is 

soldered in place. The primary reason for the pre-load is 

to quickly discharge the output when sequencing off/on.
The board comes with IOUT_OC_FAULT limits set to 0.4A 

for the +12V/–12V rails and 0.2A for the +48V/–48V rails. 

A deglitched fault response is set to mask OC when the 

channels start up. 
The LTC6101 and LT6105 current sense amplifiers are 

used on the +12V (CH0), –12V (CH1), and +48V (CH2). 

+

LT3090

V

IN

V

OUT

–15V

–12V

C1

10μF

R1

10k

R2

140k

DC2518A F13

LTC2975

V

SENSEP

V

SENSEM

88μA

REFP

+1.232V

Figure 13. Negative Voltage Sensing

Figure 14. Output Voltage Sensing for Negative Rail

LT3090

V

IN

V

OUT

–15V

–12V

R3

1k

R2

100Ω

R1

100Ω

DC2518A F15

LTC2975

V

SENSEP

V

SENSEM

+3.3V

LOAD

CURRENT

R

SNS

0.05Ω

LT6105

V

OUT

V

+

LOAD

The LT6105 is a low side current sense amplifier and is 

able to tolerate voltages up to 36V. For the –48V rail, an 

alternative solution is needed. The –48V rail (CH3) uses 

an LTC2054 and NFET to provide the current sensing and 

level shift to a single-ended signal that drives the ISNSP 

and ISNSM pins. The circuit implemented on the DC2518 

is that shown on the front page of the LTC2054 data sheet.

Figure 15. Output Current Sensing for Negative Rail

+

LT8580

V

IN

V

OUT

+12V

–48V

C1

10μF

R1

100k

DC2518A F14

LTC2975

V

SENSEP

V

SENSEM

+12V

R2, 10k

C2, 10nF

+

Summary of Contents for DC2518A

Page 1: ...of the LTC2975 Together the LTpowerPlay software and DC2518A hardware system create a power ful development environment for designing and testing configurationsettingsoftheLTC2975 LTpowerPlaystores th...

Page 2: ...Voltage Range Programmable VSENSEP n 0V to 6V Low Resolution 0V to 3 8V High Resolution Voltage Supervisor Sensing Resolution 0V to 3 8V Range 4 096 1024 0V to 6V Range 8 192 1024 4mV LSB 8mV LSB Volt...

Page 3: ...r devices in a power system Rail ThefinaloutputvoltagethattheLTC2975supervises Supervise The act of quickly responding to a voltage andcurrentconditionthatiscomparedtopre programmed values Trim Theact...

Page 4: ...scheme in a system or to diagnose power LTpowerPlay GUI SOFTWARE issues when bringing up rails LTpowerPlay utilizes the DC1613I2C SMBus PMBusControllertocommunicatewith oneofmanypotentialtargets inclu...

Page 5: ...the LED labeled LTC2975 ON illuminated green 5 Connect a 12VDC power supply with 1A capacity to the VIN input jack of the DC2518A board The blue LEDs will illuminate indicating that DC jack power and...

Page 6: ...eGUImenupull downitemDEMO DC2518A_Defaults This writes the board defaults into the LTC2975 s RAM and automatically to NVM as well 7 The LTC2975 is configured to use the RUN switch to sequence on off t...

Page 7: ...18A DC2518A DETAILS DC1613 CONNECTOR RUN SWITCH CH2 AND CH3 OUTPUTS CASCADING CONNECTOR LTC2975 PSM CH0 AND CH1 OUTPUTS PUSHBUTTON TO FORCE A RESET AND A FAULT I2 C PORTS CASCADING CONNECTOR DC JACK 1...

Page 8: ...OPERATIONS Reset the LTC2975 ToresettheLTC2975andreloadtheEEPROMcontentsinto operating memory RAM press the pushbutton switch SW2 labeled RESET Preload the Outputs Each of the outputs has preload resi...

Page 9: ...8A not only monitors each of the four outputs but can margin the outputs either high or low Margining is the operation that moves a rail up or down for testing purposes It al lows a system to be fully...

Page 10: ...y also hold the FAULT pushbutton indefinitely to demonstrate the fault behavior and retry timing COMMON BOARD OPERATIONS Clearing a Fault To clear a fault you can click the CF icon in the GUI or simpl...

Page 11: ...ext sensitiveicon IfmultipleDC2518Aboardsareconnected be sure that the desired device is selected in the system tree Notice that the EEPROM log is locked The log will not change until it is cleared by...

Page 12: ...You can think of the Respond switches as shut this channel down when another channel faults and the Propagate switches as drive the fault pin to broadcast to other channels that this channel faulted F...

Page 13: ...nvenience TheDC2518Ademoboardhastwopowersuppliesthatare capable of relatively high voltages 48V Be careful when handling the board with these channels enabled since the voltage difference between the...

Page 14: ...sistor tolerance This is the reason 0 1 resistors are used A secondary source of error comes from the ISENSEP pin current that is pulled from the divider into the LTC2975 The divider s IR drop is due...

Page 15: ...g schemes IMON current sense ampli fier and op amp with voltage translating transistor Each of the channels allows the user to try different sensing methods Zero ohm jumpers select between one or the...

Page 16: ...s connected directly to the midpoint of the two SET resistors The RSET1 and RSET2 resistor valuesarechosensuchthatthemidpointisapproximately 1 25V avoltagethatishalfoftheDAC smaximumoutput After the D...

Page 17: ...An external NFET is connected to the SET pin that when activated pulls the SET pin to GND thereby bringing VOUT to GND When the channel is disabled the VOUT_EN pin is low thereby turning the PFET on...

Page 18: ...of the boards as shown in Figure 22 Only one 12V power source is allowed SETUP PROCEDURE FOR MULTI BOARD ARRAYS 4 The USB to I2C SMBus PMBus Controller may be plugged into any board If no demo boards...

Page 19: ...to set the slave address of an I O expander which allows the addition of multiple boards to a setup The I O Figure 23 DIP Switch Set to All 0 s Figure 24 DIP Switch Set to All 1 s expander has a base...

Page 20: ...t Position Shown in Grey in the Figure Above REFERENCE DESIGNATOR SIGNAL NAME USAGE DEFAULT JP3 Bottom A0 A1 A2 DIP Switch Used to Set the Address Offset OPEN S1 CTRL Switch Used to Enable Disable Cha...

Page 21: ...21 dc2518af DEMO MANUAL DC2518A DC2518A DETAILS BOTTOM...

Page 22: ...C6101 1k 2k Array LT3090MSE GND 50m 50m 1 0k 100 2 0k GND 15V 0 1uF 0 1uF 10uF 10uF 25V GND GND 0R 0R 15V 15V 10k 140k 1k 200k 69 8k 3V3 LT6105MS8 GND 100 100 1 0k 0R 0R 130k 40 2k 3V3 GND 2N3906 3V3...

Page 23: ...0 4 7uF 25V 2 2uF 100V 1uF 100V 47nF 1nF 464k 14k 47pF GND GND 46 4k 10k 3V3 GND 16 2k 953k 0 LT8330 2 2uF 100V GND 2 2uF 100V GND 133k 33 2k 3V3 2 0k 100 100 3V3 13 7k 3 01k 13 7k GND 9 76k MMST3906...

Page 24: ...M9 R69 LED4 LED6 R71 LED5 R70 1 2 3 4 5 6 U10 C45 LED10 R94 FAULTB FAULTB RESETB SCL SDA SHARE_CLK RUN_CH0 RUN_CH1 RUN_CH2 RUN_CH3 CTRL REFP VSNSP_CH0 VSNSP_CH1 VSNSP_CH3 VDAC_CH1 VDAC_CH3 VSNSP_CH2 V...

Page 25: ...uF GND 3V3 B140 13 F B140 13 F 10m 5V 12V 30k BLUE GND 30k 30k BLUE BLUE 6 8uH 10uH GND GND 5 6 7 8 1 2 3 4 JP3 1 2 3 4 5 6 7 8 9 10 11 12 J2 2 3 1 5 6 4 S1 1 2 3 4 5 U13 C47 R75 R76 1 2 3 4 5 6 7 8 9...

Page 26: ...ORY INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE EXCEPT TO THE EXTENT OF THIS INDEMNITY NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT SPECIAL INCIDENTA...

Reviews: