background image

LTM4622A

16

Rev B

For more information 

www.analog.com

APPLICATIONS INFORMATION

As a practical matter, it should be clear to the reader that 

no individual or sub-group of the four thermal resistance 

parameters defined by JESD51-12 or provided in the Pin 

Configuration section replicates or conveys normal op-

erating conditions of a μModule. For example, in normal 

board-mounted applications, never does 100% of the 

device’s total power loss (heat) thermally conduct exclu-

sively through the top or exclusively through bottom of the 

µModule—as the standard defines for 

θ

JCtop

 and 

θ

JCbottom

respectively. In practice, power loss is thermally dissipated 

in both directions away from the package—granted, in the 

absence of a heat sink and airflow, a majority of the heat 

flow is into the board.
Within a SIP (system-in-package) module, be aware there 

are multiple power devices and components dissipating 

power, with a consequence that the thermal resistances 

relative to different junctions of components or die are not 

exactly linear with respect to total package power loss. To 

reconcile this complication without sacrificing modeling 

simplicity—but also, not ignoring practical realities—an 

approach has been taken using FEA software modeling 

along with laboratory testing in a controlled-environment 

chamber to reasonably define and correlate the thermal 

resistance values supplied in this data sheet: (1) Initially, 

FEA software is used to accurately build the mechanical 

geometry of the µModule and the specified PCB with all of 

the correct material coefficients along with accurate power 

loss source definitions; (2) this model simulates a software-

defined JEDEC environment consistent with JESD51-12 

to predict power loss heat flow and temperature readings 

at different interfaces that enable the calculation of the 

JEDEC-defined thermal resistance values; (3) the model 

and FEA software is used to evaluate the µModule with 

heat sink and airflow; (4) having solved for and analyzed 

these thermal resistance values and simulated various 

operating conditions in the software model, a thorough 

laboratory evaluation replicates the simulated conditions 

with thermocouples within a controlled-environment 

chamber while operating the device at the same power 

loss as that which was simulated. An outcome of this 

process and due-diligence yields a set of derating curves 

provided in other sections of this data sheet. After these 

laboratory test have been performed and correlated to the 

µModule model, then the 

θ

JB

 and 

θ

BA

 are summed together 

to correlate quite well with the µModule model with no 

airflow or heat sinking in a properly define chamber. This 

θ

JB

 + 

θ

BA

 value is shown in the Pin Configuration section 

and should accurately equal the 

θ

JA

 value because ap-

proximately 100% of power loss flows from the junction 

through the board into ambient with no airflow or top 

mounted heat sink.
The 1.5V, 3.3V, 5V, 8V and 12V power loss curves in 

Figure 8 to Figure 12 can be used in coordination with the 

load current derating curves in Figure 13 to Figure 23 for 

calculating an approximate 

θ

JA

 thermal resistance for the 

LTM4622A (in two-phase single output operation) with no 

heat sinking and various airflow conditions. The power loss 

curves are taken at room temperature, and are increased 

with multiplicative factors of 1.35 assuming junction 

temperature at 120°C. The derating curves are plotted 

with the output current starting at 4A and the ambient 

temperature at 30°C. These output voltages are chosen 

to include the lower and higher output voltage ranges 

for correlating the thermal resistance. Thermal models 

are derived from several temperature measurements in a 

controlled temperature chamber along with thermal mod-

eling analysis. The junction temperatures are monitored 

while ambient temperature is increased with and without 

airflow. The power loss increase with ambient temperature 

change is factored into the derating curves. The junctions 

are maintained at 120°C maximum while lowering output 

current or power with increasing ambient temperature. The 

decreased output current will decrease the internal module 

loss as ambient temperature is increased. The monitored 

junction temperature of 120°C minus the ambient operat-

ing temperature specifies how much module temperature 

rise can be allowed. As an example in Figure 16, the load 

current is derated to ~3A at ~100°C with 200LFM air but 

not heat sink and the power loss for the 5V to 3.3V at 3A 

output is about 1.15W. The 1.15W loss is calculated with 

the ~0.85W room temperature loss from the 5V to 3.3V 

power loss curve at 3A, and the 1.35 multiplying factor. 

If the 100°C ambient temperature is subtracted from the 

120°C junction temperature, then the difference of 20°C 

divided by 1.15W equals a 17.5°C/W 

θ

JA

 thermal resis-

tance. Table 3 specifies a 17°C/W – 18°C/W value which 

is very close. Tables 2 to 6 provide equivalent thermal 

resistances for 1.5V, 3.3V, 5V, 8V and 12V outputs with 

Summary of Contents for Analog Devices LTM4622A

Page 1: ...6V to 20V 0 6V to 5 5V Dual 2 5A or Single 5A LTM4622A 1 5V to 12V Dual 2A or Single 4A 3 3V and 5V Dual Output DC DC Step Down Module Regulator 12V Input 3 3V and 5V Output Efficiency vs Load Current...

Page 2: ...e0 BGA 4 40 C to 125 C Consult Marketing for parts specified with wider operating temperature ranges Device temperature grade is indicated by a label on the shipping container Pad or ball finish code...

Page 3: ...2 A VOUT Line VOUT Line Regulation Accuracy VOUT 1 5V VIN1 VIN2 3 6V to 20V IOUT 0A l 0 01 0 1 V VOUT Load VOUT Load Regulation Accuracy VOUT 1 5V IOUT 0A to 2A l 0 2 1 0 VOUT AC Output Ripple Voltage...

Page 4: ...s is determined by specific operating conditions in conjunction with board layout the rated package thermal resistance and other environmental factors SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS VIN...

Page 5: ...Hz 5V OUTPUT 1 5MHz LOAD CURRENT mA 0 001 0 01 0 1 1 10 0 10 20 30 40 50 60 70 80 90 100 EFFICIENCY 4622A G04 Burst Mode OPERATION CMM 12V Output Transient Response 50 s DIV LOAD STEP 1A DIV VOUT AC C...

Page 6: ...TPUT CAPACITOR 10 F CERAMIC 47 F POSCAP SOFT START CAP 0 1 F 20 s DIV 4622A G14 IIN 1A DIV VOUT 2V DIV VIN 12V VOUT 3 3V fSW 1MHz OUTPUT CAPACITOR 10 F 47 F POSCAP 10ms DIV VOUT 2V DIV RUN 10V DIV IIN...

Page 7: ...adjustment PACKAGE ROW AND COLUMN LABELING MAY VARY AMONG Module PRODUCTS REVIEW EACH PACKAGE LAYOUT CAREFULLY RUN1 D2 RUN2 B2 RunControlInputofEachSwitch ing Mode Regulator Channel Enables chip oper...

Page 8: ...itor Requirement VIN 3 6V to 20V VOUT 1 5V IOUT 2A 22 47 F Figure 1 Simplified LTM4622A Block Diagram POWER CONTROL FB2 60 4k 2 2 F 0 1 F 8 25k 0 22 F 10 F INTVCC VOUT2 TRACK SS2 0 1 F TRACK SS1 RUN1...

Page 9: ...s above 22 5V to protect internal devices Multiphaseoperationcanbeeasilyemployedbyconnecting SYNC pin to an external oscillator Up to 6 phases can be paralleled to run simultaneously a good current sh...

Page 10: ...above the zero current level to initiate another cycle Force Continuous Current Mode CCM Operation In applications where fixed frequency operation is more critical than low current efficiency and wher...

Page 11: ...ule has a phase locked loop comprised of an internal voltage controlled oscillator and a phase detector This allows the internal top MOSFET turn on to be locked to the rising edge of the external cloc...

Page 12: ...theramprate of the output voltage An internal 1 4 A current source will charge up the external soft start capacitor towards INTVCC voltage When the TRACK SS voltage is below 0 6V it will take over the...

Page 13: ...th the same ratios as the resistor values calculated from the above equation can be used For example where the 60 4k is used then a 6 04k can be used to reduce the TRACK pin offset to a negligible val...

Page 14: ...scontinuous mode DCM operation until the TRACK SS pin voltage reaches 0 6V reference voltage This will prevent the BG from turning on during the pre biased output start up which would discharge the ou...

Page 15: ...flect an actual application or viable operating condition 3 JCtop the thermal resistance from junction to top of the product case is determined with nearly all of the componentpowerdissipationflowingt...

Page 16: ...other sections of this data sheet After these laboratory test have been performed and correlated to the Modulemodel thenthe JBand BAaresummedtogether to correlate quite well with the Module model wit...

Page 17: ...F12 VIN 16V AMBIENT TEMPERATURE C 30 40 50 60 70 80 90 100 110 120 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 LOAD CURRENT A 4622A F13 0LFM 200LFM 400LFM AMBIENT TEMPERATURE C 30 40 50 60 70 80 90 100 110...

Page 18: ...5 LOAD CURRENT A 4622A F19 0LFM 200LFM 400LFM AMBIENT TEMPERATURE C 30 40 50 60 70 80 90 100 110 120 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 LOAD CURRENT A 4622A F20 0LFM 200LFM 400LFM AMBIENT TEMPERATU...

Page 19: ...16 Figure 9 400 None 17 18 Table 4 5V Output DERATING CURVE VIN V POWER LOSS CURVE AIRFLOW LFM HEAT SINK JA C W Figures 19 20 12 16 Figure 10 0 None 19 20 Figures 19 20 12 16 Figure 10 200 None 17 18...

Page 20: ...T 4 7 F 25V 0805 X5R Taiyo Yuden JMK212BJ476MG T 47 F 6 3V 0805 X5R VOUT V CIN CERAMIC F CIN BULK COUT1 CERAMIC F COUT2 BULK F CFF pF VIN V DROOP mV P P DERIVATION mV RECOVERY TIME s LOAD STEP A LOAD...

Page 21: ...rovided to protect each unit from catastrophic failure The device does support thermal shutdown and over current protection and without airflow The derived thermal resistances in Tables 2 to 6 for the...

Page 22: ...information www analog com APPLICATIONS INFORMATION Figure 24 Thermal Image 12V Input 3 3V and 5V Output 2A Each No Airflow and No Heat Sink Figure 25 Thermal Image 12V Input 5V and 8V Output 2A Each...

Page 23: ...ce a dedicated power ground layer underneath the unit Thetwodedicatedinputdecouplingcapacitors onefor each VIN closely placed on each side of the module Tominimizetheviaconductionlossandreducemodule t...

Page 24: ...65k 4622A F28 VOUT 3 3V 4A 47 F 2 F 0 1 F VOUT1 VOUT2 FB1 COMP1 COMP2 FREQ GND LTM4622A PGOOD1 PGOOD2 INTVCC PGOOD SYNC MODE TRACK SS1 TRACK SS2 FB2 VIN 4V TO 20V VIN2 VIN1 RUN2 RUN1 10 F 10 F 3 16k 4...

Page 25: ...RACK SS1 TRACK SS2 13 3k FB2 VIN 4V TO 20V VIN2 VIN1 RUN2 RUN1 10 F 10 F 10k 10 F 4 VIN 4V TO 20V VOUT 1 5V 8A 1 F 47 F 4 0 1 F VOUT1 VOUT2 FB1 COMP1 COMP2 FREQ GND LTM4622A PGOOD1 PGOOD2 PGOOD VIN2 R...

Page 26: ...ION PIN ID FUNCTION PIN ID FUNCTION A1 VOUT2 A2 VIN2 A3 TRACK SS2 A4 FB2 A5 COMP2 B1 VOUT2 B2 RUN2 B3 VIN2 B4 PGOOD2 B5 GND C1 GND C2 GND C3 INTVCC C4 FREQ C5 SYNC MODE D1 VOUT1 D2 RUN1 D3 VIN1 D4 PGO...

Page 27: ...25mm 1 82mm Reference LTC DWG 05 08 1949 Rev 7 SEE NOTES NOTES 1 DIMENSIONING AND TOLERANCING PER ASME Y14 5M 1994 2 ALL DIMENSIONS ARE IN MILLIMETERS LAND DESIGNATION PER JESD MO 222 SPP 010 5 PRIMA...

Page 28: ...R MAY BE EITHER A MOLD OR MARKED FEATURE b 25 PLACES A DETAIL B PACKAGE SIDE VIEW M X Y Z ddd M Z eee A2 D E e b F G DETAIL A 0 3175 0 3175 BGA 25 0517 REV A LTMXXXXXX Module TRAY PIN 1 BEVEL PACKAGE...

Page 29: ...use nor for any infringements of patents or other rights of third parties that may result from its use Specifications subject to change without notice No license is granted by implication or otherwise...

Page 30: ...m 1 91mm LGA LTM4642 20VIN Dual 4A Step Down Module Regulator 4 5V VIN 20V 0 6V VOUT 5 5V 9mm 11 25mm 4 92mm BGA LTM4643 Ultrathin Quad 3A Step Down Module Regulator 4V VIN 20V 0 6V VOUT 3 3V 9mm 15mm...

Reviews: