background image

KFD 6-25-60/060801

7

18.0 THERMAL CONSIDERATIONS

To ensure reliable operation of the KFD unit, thermal management is important. Heat dissipated by the unit 
is conducted to the case, and subsequently convected to the  surrounding air. Convection cooling can be 
improved by mounting a heat sink to the top of the unit. Six threaded holes, No. 4-40 [0.18 inches deep 
(46mm)] are provided for this purpose. A dry pad or thermal compound should be used to minimize thermal 
resistance between the case and the heat sink. The case temperature should not exceed 90 degrees C.

18.1 CASE TEMPERATURE 

Proper cooling for the KFD  D.C. to D.C. Converter can be verified by measuring the case temperature of 
the module. It is  measured on the top surface of the unit at a sensing point---3 inches (76mm) from the left 
edge of the power module, and 0.7 inches (18mm) from the top edge of the unit. The case temperature 
must not exceed 95°C while the unit is operating in the final system configuration. After the module has 
reached thermal equilibrium, the measurement can be made with a thermocouple or surface probe. If a 
heat sink is mounted to the case, make the measurement at the base of the heat sink as close as possible 
to the heat sensing point. The contact resistance between the mounting surface and the heat sink must be 
taken into account when making this measurement.
 
Maintaining the operating case temperature (Tc) within the specified range keeps internal component tem-
peratures within their specifications. That in turn helps keep the expected mean time between failure 
(MTBF) from falling below the specified rating. The KFD Power Module is designed with temperature resis-
tant components such as ceramic capacitors that do not degrade during prolong exposure to high temper-
atures, as do aluminum electrolytic capacitors.

18.2 FORCED CONVECTION

The discussion that follows can be applied to all high powered KFD board mounted power modules in the 
4.8in (121.9mm) x 2.5in (63.5mm) x 0.5in (12.7mm) package.

Increasing the air flow over the module improves cooling. In that regard Figure 11 shows the power derat-
ing (P

D

) versus local ambient temperature (T

A

) at air flows, from natural convection to 800 ft./min. (4.1 m/

s). The curves in this Figure were obtained from measurements made in a  free stream of air approaching 
a vertically oriented module on a  printed wiring board, positioned in a rectangular passage. The Figure 
can be used to determine the appropriate air flow for a given set of operating conditions.

For example, at P

D

=20W and T

A

=40°C, an air flow of 200 ft./min. (1.0 m/s) is sufficient to keep the module 

within its ratings.

18.3 HEAT SINK MODELS 

Figures 9 and 10  show a number of standard heat sinks that are available for the KFD Power Module, 
labeled with their respective thermal resistances for natural convection. The heat sinks mount to the top 
surface of the power module using No. 4-40 hardware, torqued to 5 in.lbs. To minimize contact resistance 
and  temperature drops, use a thermally conductive dry pad or thermal grease  between the case and heat 
sink.  

18.4 NATURAL CONVECTION  

The plots in Figures 12 and 13 represent power derating for a power module in natural convection when 
attached to various heat sinks (these include designs with fins oriented along the length and designs with 

Summary of Contents for KFD 6-25-60W

Page 1: ...or the Kepco Docu mentation Office in New York 718 461 7000 requesting the correct revision for your par ticular model and serial number 3 The contents of this manual are protected by copyright Repro...

Page 2: ......

Page 3: ...Output Voltage Reversal 5 12 0 Isolation 5 13 0 Parallel Operation 5 14 0 Forced Load Sharing 5 15 0 Remote Sense 6 16 0 Safety Considerations 6 17 0 Output Voltage Trim 6 18 0 Thermal Considerations...

Page 4: ...erter Circuit Configuration for RTrim Up to Increase Voltage Setpoint 17 9 Heat Sinks for Vertical Orientation Kepco Model KFD 02 and the Kepco Model KFD 04 18 10 Heat sinks for Horizontal Orientation...

Page 5: ...erature range of 0 to 71 C Within this range the unit will operate according to the specifications listed below provided they are not subject to stress The unit will function with degraded reliability...

Page 6: ...Hz to 20Mhz 100 mV p p max Output Current Minimum 1 0A Output Current Maximum 30 0A 1 At less than minimum load the DC to DC converter may exceed its output ripple specification TABLE 3 DYNAMIC RESPON...

Page 7: ...ent 51 0 40 5 A Output Current Limit Inception 30 9 39 0 A Output Current 30 0 A Output Regulation Line Vi 36 to 72 Volts Load Io 1 0A to Iomax Temperature TA 0 C to 90 C 02 0 05 0 4 0 2 50 50 mV TABL...

Page 8: ...be remotely controlled via a switch that the user must supply across the ON OFF terminal and the VI terminal VON OFF At logic low VON OFF 0 to 1 2 Volts the unit is ON and the maximum ION OFF when the...

Page 9: ...rotect against a short circuit condition The forward voltage drops across the diodes do not affect the set point voltage applied to the load because of the remote sensing compensation If multiple unit...

Page 10: ...quirements of the Safety Extra Low Voltage Standard SELV one of the following conditions must be valid for the D C input The Converter input meets all requirements of SELV or The Converter must be pro...

Page 11: ...etween failure MTBF from falling below the specified rating The KFD Power Module is designed with temperature resis tant components such as ceramic capacitors that do not degrade during prolong exposu...

Page 12: ...e additional air flow The following two examples illustrate how the curves can be used to determine thermal performance under various air flow and heat sink configurations Example 1 To determine the a...

Page 13: ...the printed wiring board 18 8 RADIATION HEAT TRANSFER Radiation is not dependent upon the air flow over the power module but on the temperature difference between the module and the surrounding envir...

Page 14: ...Short Circuit Protection Output Overvoltage Clamp 6 6 Volts minimum High Efficiency 80 Typical Fabricated with Surface Mount Technology Compatible for printed circuit board mounting Compatible for he...

Page 15: ...E AND EFFICIENCY MEASUREMENTS FOR THE DC TO DC CONVERTER NOTE WHEN PLACING THE POWER MODULE INTO A PRINTED CIRCUIT BOARD SOCKET USE KELVIN CONNECTIONS AT THE POWER MODULE INPUT AND OUTPUT TERMINALS TO...

Page 16: ...FLECTED RIPPLE FOR THE SINGLE OUTPUT KFD DC TO DC CONVERTER NOTE AT THE INPUT THE REFLECTED RIPPLE IS MEASURED WITH A SIMU LATED SOURCE IMPEDANCE OF 12 H THE CAPACITOR Cs OFFSETS POSSIBLE BATTERY IMPE...

Page 17: ...KFD 6 25 60 060801 13 FIGURE 3 MECHANICAL OUTLINE DRAWING OF THE SINGLE OUT PUT KFD DC TO DC CONVERTER...

Page 18: ...14 KFD 6 25 60 060801 FIGURE 4 REMOTE ON OFF WIRING CONFIGURATION FOR THE SINGLE OUTPUT KFD DC TO DC CONVERTER 3040491...

Page 19: ...KFD 6 25 60 060801 15 FIGURE 5 WIRING CONFIGURATION FOR REDUNDANT PARALLEL OPERATION OF THE KFD DC TO DC CONVERTER...

Page 20: ...16 KFD 6 25 60 060801 FIGURE 6 CIRCUIT CONFIGURATION FOR SINGLE KFD DC TO DC CONVERTER REMOTE SENSE OPERATION...

Page 21: ...0801 17 FIGURE 7 TOP KFD DC TO DC CONVERTER CIRCUIT CONFIGURA TION FOR RTrim Down TO DECREASE VOLTAGE SETPOINT FIGURE 8 BOTTOM KFD DC TO DC CONVERTER CIRCUIT CONFIG URATION FOR RTrim Up TO INCREASE VO...

Page 22: ...18 KFD 6 25 60 060801 FIGURE 9 HEAT SINKS FOR VERTICAL ORIENTATION KEPCO MODEL KFD 02 AND THE KEPCO MODEL KFD 04...

Page 23: ...KFD 6 25 60 060801 19 FIGURE 10 HEAT SINKS FOR HORIZONTAL ORIENTATION KEPCO MODEL KFD 01 AND THE KEPCO MODEL KFD 03...

Page 24: ...60801 FIGURE 11 FORCED CONVECTION DERATING POWER DISSIPATION VERSUS LOCAL AMBIENT TEMPERATURE NOTE THE GRAPHS ARE PLOTTED AS A FUNCTION OF THE AIR FLOW WITHOUT THE USE OF A HEAT SINK FOR THE KFD POWER...

Page 25: ...KFD 6 25 60 060801 21 FIGURE 12 HEAT SINK DERATING CURVES NATURAL CONVECTION FINS ORIENTED ALONG THE WIDTH...

Page 26: ...22 KFD 6 25 60 060801 FIGURE 13 HEAT SINK DERATING CURVES NATURAL CONVECTION FINS ORIENTED ALONG THE LENGTH...

Page 27: ...KFD 6 25 60 060801 23 FIGURE 14 HEAT SINK RESISTANCE CURVES FOR FINS ORIENTED ALONG VERTICAL AND HORIZONTAL DIRECTIONS...

Page 28: ......

Reviews: