background image

 9 / 14

General

1

2

Safety

Doc no. 2.054.013.1b 

05/2018

Part no. 33.03.336

Safety information
The installation manual does not represent a full 
listing of all necessary safety measures required 
for safe operation of the device.
Certain operating conditions may require further 
measures. The installation manual contains 
information that you must observe for your 
own personal safety and to avoid damage to 
property.

Symbols used:

c

This symbol is used as an 
addition to the safety instructions 
and warns of an electrical hazard.

m

This symbol is used as an 
addition to the safety instructions 
and warns of a potential hazard.

This symbol with the word 

NOTE! 

describes:

•  Procedures that do not pose 

any risks of injures.

•  Important information, 

procedures or handling steps.

Safety information is highlighted by a warning 
triangle and is indicated as follows depending 
on the degree of danger:

m

DANGER!

Indicates an imminent danger that 
causes severe or fatal injuries.

m

WARNING!

Indicates a potentially hazardous 
situation that can cause severe 
injuries or death.

m

CAUTION!

Indicates a potentially hazardous 
situation that can cause minor 
injuries or damage to property.

Safety measures
When operating electrical devices, certain parts 
of these devices are invariably subjected to 
hazardous voltage. Therefore, severe bodily 
injuries or damage to property can occur if they 
are not handled properly:

•  De-energise your device before starting 

work! Check that it is de-energised.

•  Before connecting connections, earth the 

device at the ground wire connection if 
present.

3

•  Hazardous voltages may be present in all 

switching parts that are connected to the 
power supply.

•  Hazardous voltages may also be present 

in the device even after disconnecting the 
supply voltage (capacitor storage).

•  Do not operate equipment with current 

transformer circuits while open.

•  Do not exceed the threshold values specifi ed 

in the user manual and on the rating plate. 
Also adhere to this when inspecting and 
commissioning.

•  Observe the safety and warning instructions in 

the documents that belong to the device! 

Qualifi ed staff

In order to prevent personal injuries and damage 
to property, only qualifi ed staff with electrical 
training may work on the device, with knowledge 
of

•  the national accident prevention regulations
•  the safety engineering standards
•  installing, commissioning and operating the 

device.

Proper use

The device is

•  intended to be installed in switching cabinets 

and small installation distributors (see step 3, 
"Installation").

•  not intended to be installed in vehicles! Using 

the device in non-stationary equipment is 
considered an extraordinary environmental 
condition and is only permitted with a special 
agreement.

•  not intended to be installed in environments 

with harmful oils, acids, gases, vapours, 
dusts, radiation, etc.

The prerequisites for faultless, safe operation 
of the device are proper transport and proper 
storage, set-up and installation, as well as 
operation and maintenance.

 14

 12

 11

5

Device short description

Install the device in a weather-protected front 
panel on switching cabinets.

Cut-out size:
138

+0.8

 x 138

+0.8

 mm

Ensure!
Adequate ventilation
•   The device is installed 

vertically!

•   Adherence to clearances 

from neighbouring 
components!

Fig.Mounting position,
rear view

Establish Ethernet connection to the PC

The three most common Ethernet connections 
between PC and device are described here:

PC

UMG

Ethernet 

(cross patch cable)

The PC and the UMG 512-PRO require a static IP address.

1.

The PC and the UMG 512-PRO require a static IP address.

Switch/

router

Patch cable

Patch cable

PC

UMG

2.

The DHCP server assigns IP addresses to the UMG 512-PRO and 
the PC automatically.

Patch cable

Patch cable

DHCP
server

PC

UMG

Switch/

router

3.

m

CAUTION!

Damage to property due to 
incorrect network settings

Incorrect network settings can cause faults in 
the IT network!
Obtain information from your network 
administrator about the correct Ethernet 
network settings for your device.

More information on device confi guration 
and communication is provided as of step 13.

Voltage measurement

The device has 4 voltage measurement inputs 
and is suitable for various connection variants.

m

CAUTION!

Risk of injuries or damage to 
the device

Failure to observe the connection conditions 
for the voltage measurement inputs can cause 
injuries to you or damage to the device.
Therefore, note the following:

• 

Do not connect the voltage measurement 
inputs

 

-

to DC voltage.

 

-

Do not use for voltage measurement in 
SELV circuits (safe extra low voltage).

• 

Voltages that exceed the allowed network 
rated voltages be connected via a voltage 
transformer.

• 

The voltage measurement inputs are to 
be equipped with a suitable, labelled fuse 
and isolation device located in the vicinity.

4

Network systems

Network systems and maximum rated voltages (DIN EN 61010-1/A1):

Three-phase four-conductor 

systems

with earthed neutral conductor

Three-phase four-conductor 

systems with non-earthed neutral 

conductor (IT networks)

Three-phase four-conductor 

systems, not earthed

Three-phase four-conductor 

systems with earthed phase

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

IEC U

L-N

 / U

L-L

: 417 VLN / 720 VLL

Only partially suitable for use in non-earthed 

networks (see step 7).

U

L-L

600 VLL

UL U

L-N

 / U

L-L

: 347 VLN / 600 VLL

Two-phase two-conductor 

systems, not earthed

Single-phase two-conductor 

systems with earthed neutral 

conductor

Separated single-phase three-

conductor systems with earthed 

neutral conductor

Application areas for the 
device:

•  2, 3 and 4 conductor 

networks (TN and TT 
networks).

•  In residential and 

industrial applications.

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

Only partially suitable 

for use in non-earthed 
networks (see step 7).

IEC

U

L-N 

480 VLN

IEC U

L-N

 / U

L-L

: 400 VLN / 690 VLL

UL

U

L-N 

480 VLN

UL U

L-N

 / U

L-L

: 347 VLN / 600 VLL

 Connecting the supply voltage

Fig. Connecting of 
supply voltage.

6

 15

Voltage measurement in the three-phase 
four-conductor system (TN, TT networks)
.
Note: Earth your system!

Voltage measurement in the three-phase three-
conductor system (IT network).
The device is only suitable for use in IT networks 
to a limited extent, as the measured voltage 
relative to the housing potential is measured and 
the input impedance of the device creates residual 
current against the earth. The residual current can 
trigger insulation monitoring in IT networks.
Connection variants with voltage transformers 
are suitable for IT networks without 
restrictions!

Schematic diagram for voltage measurement

Fig. Schematic diagram, device in an IT network without N.

Current measurement

The device

•  is intended for connecting current 

transformers with secondary currents 
of ../1 A and ../5 A.

•  does not measure DC.
•  has current measurement inputs that can 

be loaded with a maximum of 120 A for 
1 second. 

Fig. Connection 
example for "Current 
measurement via
current transformers".

The current direction can be corrected via 
the serial interfaces or on the device for each 
phase. If incorrectly connected, a subsequent 
re-connection of the current transformer is not 
required.

8

7

Confi guration

After the power returns, the device displays the 
fi rst measured value indication "Home".

•  Press button 1 "ESC" to access the 

"Confi guration" menu:

•  Use buttons 3 and 4 to select the menu entry 

to be adjusted in the "Confi guration" menu. 

•  Confi rm the selected menu entry by pressing 

button 6 "Enter"!

Press button 1 "ESC" to change back to the 
higher menu level.

The "Communication" menu entry takes you to 
the following window:

Your device has 1 Ethernet interface and 1 
RS485 interface (fi eld bus) for communication, 
which can be adjusted in the "Communication" 
window.

NOTE!
Detailed information on all menu entries and their settings can be found in the user manual.

 13

L1

N PE

L3

L2

Fig. "Voltage measurement" 
connection example.

NOTE!
As an alternative to the fuse and circuit 
breaker, you can use a line safety switch.

m

CAUTION!

Damage to property due to not 
observing the connection conditions or 
impermissible overvoltages

Your device can be damaged or destroyed by a failure to 
comply with the connection conditions or by exceeding the 
permissible voltage range.
Before connecting the device to the supply voltage, 
check:

• 

The ground wire connection must be connected with 
the system earthing!

• 

The voltage and frequency must meet the 
specifi cations on the rating plate! Adhere to the 
threshold values as described in the user manual!

• 

In building installations, the supply voltage must be 
protected with a UL/IEC approved circuit breaker / 
a fuse!

• 

The circuit breaker

 

-

must be easily accessible for the user and be 
installed close to the device.

 

-

must be labelled for the relevant device.

• 

Do not connect the supply voltage to the voltage 
transformers.

• 

Provide a fuse for the neutral conductor if the 
source's neutral conductor connection is not earthed.

Fig. Schematic diagram, device in a 

TN network.

PE

347V/600V 50/60Hz

L2

L3

N

L1

N

L1

240V 
50/60Hz

Earthing 
of the 
system

DC

AC/DC

Auxiliary supply

Voltage measurement

4M

4M

4M

4M

V1

V3

V2

Vref

4M

V4

UMG 512-PRO

600V 50/60Hz

DC

AC/DC

L2

L3

Auxiliary supply

Voltage measurement

4M

4M

4M

4M

V1

V3

V2

4M

V4

Earthing of
the system

Impedance

L1

UMG 512-PRO

Vref

8

Connection variants for baseline measurement inputs 1-3 (voltage and current)

Measurement in a three-phase 4-conductor network 

with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

The device requires the mains frequency 
(range from 15 Hz to 440 Hz) to measure and 
calculate measured values.

It is not necessary to confi gure connection 
schematics for measurement inputs V4 and I4.

Measurement in a three-phase 4-conductor network 

with symmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement via 3 voltage transformers in a three-phase 

4-conductor network with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement via 2 voltage transformers in a three-phase 

4-conductor network with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement via 2 current transformers in a three-phase 

3-conductor network with symmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement in a three-phase 4-conductor network 

with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement of one phase in a three-phase 4-conductor network.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a single-phase 3-conductor network. 

I3 and U3 are not calculated and set to zero.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

NOTE!
Further information on

•  supporting measurements via inputs 

V4 (L4) and I4, and

•  current data and current transformer 

data

is provided in the user manual.

9

The device has 3 types of address allocation for the 
Ethernet interface (TCP/IP) in 

DHCP mode:

1. 

OFF (fi xed IP address)
The user selects the IP address, network mask 
and gateway on the device. Use this mode for 
straightforward networks without DHCP servers. 

2. 

BOOTP
Automatically integrates your device into an 
existing network. BOOTP is an older protocol and 
has a smaller scope of functions than DHCP.

3. 

DHCP
When started, the device automatically receives 
the IP address, the network mask and the gateway 
from the DHCP server.

Standard setting for the device is DHCP!

Communication via Ethernet interface (TCP/IP)

c

WARNING!

Risk of injury due to electric 
voltage!

Severe bodily injuries or death can occur due 
to:

•  touching bare or stripped wires that are 

live,

•  current measurement inputs that are 

dangerous to touch on the device and on 
the current transformers.

De-energise your device before starting 
work! Check that it is de-energised.
Earth the system. To do this, use the earth 
connection points with the earthing symbol. 
Also earth the secondary windings on the 
current transformer and all metal parts on 
the transformer that are able to be touched.

RECOMMENDATION!
For a PE/N measurement, connect the 
protective earth (PE) to measurement 
input V4. Do not use a green and yellow 
wire for this as the conductor does not 
have any protective function!

The voltage measurement inputs are designed for 
measurements in low voltage networks, in which the 
following rated voltages occur: 

•  Per IEC - 417 V phase to earth and 720 V phase 

to phase in the 4-conductor system.

•  Per UL - 347 V phase to earth and 600 V phase to 

phase in the 4-conductor system.

•  600 V phase to phase in the 3-conductor system.

The measurement and surge voltages meet 
overvoltage category 600 V CATIII.

User manual:

The device is a class A power quality analyser 
that

•  measures and calculates electrical variables 

such as voltage, current, power, energy, 
harmonics, etc. in building installations, 
on distribution units, circuit breakers and 
busbar trunking systems.

•  measures and monitors residual currents 

(RCM) and currents at the central 
grounding point (CGP). The residual current 
monitoring is carried out via an external 
residual current transformer (30 mA rated 
current) on the current measurement inputs 
I5 and I6.

•  displays measurement results and transmits 

them via interfaces (Ethernet, Modbus, 
Profi bus).

m

CAUTION!

Damage to property due to 
not observing the installation 
instructions

Failing to observe the installation instructions 
can damage or destroy your device.
Ensure that there is adequate air circulation 
in your installation environment; if the 
ambient temperatures are high, ensure there 
is adequate cooling if required.

NOTE!
Detailed information on the device 
functions and data can be found in the 
user manual.

Circuit breaker

Fuse

L1

N PE

L3

L2

Protective 
conductor

Ground wire 
connection

The supply voltage level for your device is 
specifi ed on the rating plate.
After connecting the supply voltage, the fi rst 
measured value indication "Home" appears 
on the display. If no indication appears, check 
whether the supply voltage is within the rated 
voltage range.

c

WARNING!

Risk of injury due to electric 
voltage!

Severe bodily injuries or death can occur due to

•  touching bare or stripped wires that are live.
•  device inputs that are dangerous to touch.

De-energise your device before starting 
work! Check that it is de-energised.

Circuit
breaker

L1

N PE

L3

L2

S

1

S

2

S

1

S

2

S

1

S

2

S

1

S

2

Ethernet connection

Patch cable

Recommendation:

Use at least CAT5 
cables!

L2 L3

N L1

Load

PE

Residual current monitoring (RCM) via I5 and I6

"Residual current monitoring 
via current transformer" 
connection variant

Suitable residual current transformers with 
a rated current of 30 mA are connected to 
terminals 4 and 5 (

I5) and terminals 6 and 7 

(

I6).

The UMG 512-PRO measures residual currents 
in accordance with IEC/TR 60755 (2008-01), 

 

Type A

NOTE!

•  The transformation ratios for 

the residual current transformer 
inputs can be confi gured using the 
GridVis® software.

•  The 

"Energy Analyser 512-PRO 

with residual current monitoring 
via measurement inputs I5/I6"
 
connection variant and further 
information are provided in the
user manual.

•  It is not necessary to confi gure 

a connection schematic for 
measurement inputs I5 and I6.

The device is suitable for use as a residual 
current monitoring device (RCM) to monitor

•  AC
•  DC and
•  pulsing DC.

 10

Fuse
(UL/IEC listed)

Deutsche V

ersion:

siehe V

or

derseite

Janitza electronics GmbH
Vor dem Polstück 6
D-35633 Lahnau / Germany
Support tel. +49 6441 9642-22
Fax +49 6441 9642-30
e-mail: [email protected]
www.janitza.com

www

.janitza.com

Assembly

Power Quality Analyser

UMG 512-PRO

Installation manual

Residual current monitoring (RCM)

 Installation

 Device settings

Disclaimer

The observance of the information products 
for the devices is a prerequisite for safe opera-
tion and to achieve the stipulated performance 
characteristics and product characteristics. 
Janitza electronics GmbH accepts no liability 
for injuries to personnel, property damage 
or fi nancial losses arising due to a failure to 
comply with the information products. Ensure 
that your information products are accessible 
and legible.

Further information can be found on our web-
site www.janitza.com at Support > Downloads.

Copyright notice

© 2016 - Janitza electronics GmbH - Lahnau.
All rights reserved. Duplication, editing, 
distribution and any form of exploitation, also 
as excerpts, is prohibited.

Subject to technical amendments

•  Make sure that your device agrees with the 

installation manual.

•  Read and understand fi rst product-related 

documents.

•  Keep product supporting documentation 

throughout the life available and, where ap-
propriate, to pass on to subsequent users.

•  Please inform yourself about device revisi-

ons and the associated adjustments to the 
product-related documentation on
www.janitza.com.

 

Disposal

Please observe national regulations! 
If disposing of individual parts, please dispose 
of them in accordance with their nature and 
existing country-specifi c regulations, for 
example as:

•  Electrical scrap
•  Plastics
•  Metals

Or, task a certifi ed disposal business with the 
scrapping.

Relevant laws, applied standards and 
directives

The laws, standards and directives for the 
device applied by Janitza electronic GmbH 
can be found in the declaration of conformity 
on our website.

The UMG 512-PRO is operated via 6 function 
keys for

•  selecting measured value indications.
•  Navigation within the menus.
•  Editing device settings.

Key

Function

•  Back to home screen
•  Exits selection menu

•  Select digit (to the left)
•  Selects main values (U, I, P ...)
•  Changes (number -1)
•  By-values (select)
•  Selects menu item
•  Changes (1)
•  By-values (select)
•  Selects menu item
•  Select digit (to the right)
•  Selects main values (U, I, P ...)

•  Opens selection menu
•  Confi rm selection

Operation and button functions

Fig. UMG 512-PRO display - 
"Home" measured value indication 

NOTE! Current and voltage transformer 
ratios.
The current and voltage transformer ratios can 
be conveniently confi gured via

•  the Confi guration > Measurement > 

Measurement transformer > MAIN 
measurement transformer menu.

•  the GridVis® software.

More details on current transformers and 
voltage transformer ratios and their adjustment 
can be found in the user manual.

NOTE!
For further information on operating, 
displays and button functions on your 
device, see the user manual.

Display title

Measured 
values

Labelling of the 
function keys
Function keys

Technical data

General

Net weight

(with attached connectors)

approx. 1080 g

Device dimensions

l = 144 mm,

b = 144 mm,

h = 75 mm

Battery

Typ Li-Mn CR2450, 3 V

(approval i.a.w. UL 1642)

Clock

(in temperature range 

-40°C to 85°C)

+-5ppm (corresponding to 

approx. 3 minutes p.a.)

Transport and storage

The following information applies to devices which are trans-

ported or stored in the original packaging.
Free fall

1 m

Temperature

-25° C to +70° C

Ambient conditions during operation

The device

•  weather-protected and stationary use.

•  connected to the protective conductor connection.

•  corresponds to protection class I in acc. with IEC 60536

(VDE 0106, Part 1).

Working temperature range

-10° C .. +55° C

Relative humidity

5 to 95% at 25°C

without condensation

Operating altitude

0 to 2000 m above sea level

Pollution degree

2

Einbaulage

vertical

Lüftung

no forced ventilation required.

Protection against ingress of 

solid foreign bodies and water

- Front side

- Rear side

IP40 in acc. with EN60529

IP20 in acc. with EN60529

Supply voltage

Protection of the  
supply voltage (fuse)

6 A, Char B

(approved i.a.w. UL/IEC)

Installations of
overvoltage category

300 V CAT III

Nominal range

Option 230 V

AC 95 V - 240 V (50/60 Hz) or

DC 80 V - 300 V
Option 24 V

AC 48 V - 110 V (50/60 Hz) or

DC 24 V - 150 V

Operating range

+-10% of nominal range

Power consumption

Option 230 V: max. 14 VA / 7 W

Option 24 V: max. 13 VA / 9 W

Voltage measurement

Three-phase 4-conductor 
systems with rated voltages 
(L-N/L-L) up to

IEC: max. 417 V/720 V

UL: max. 347 V/600 V

Three-phase 3-conductor 
systems with rated voltages 
(L-L) up to

max. 600 V (+10%)

Overvoltage category

600 V CAT III

Rated surge voltage

6 kV

Protection of

voltage measurement

1 - 10 A

(With IEC / UL approval)

Measurement range L-N 

1)

0 .. 600 Vrms

Measurement range L-L 

1)

0 .. 1000 Vrms

Resolution

0.01 V

Crest factor

1.6 (related to 600 Vrms)

Impedance

4 MΩ / phase

Power consumption

ca. 0.1 VA

Sampling rate

25.6 kHz / phase

Transients

39 µs

Frequency range of

the fundamental oscillation

- resolution

15 Hz .. 440 Hz
0.001 Hz

1)  The device can only determine measured values, if at least 

a voltage L-N greater than 10Veff or a voltage L-L of greater 
than 18Veff is present at one voltage measurement input.

2)  Udin = arranged input voltage according to

DIN EN 61000-4-30

Current measurement

Rated current

5 A

Metering range

0.005 to 7 Arms

Measurement range exceeded 
(overload)

From 8.5 Arms

Crest factor

1.41

Resolution

0.1 mA

Overvoltage category

Option 230 V: 300 V CAT III

Option 24 V: 300 V CAT II

Measurement surge voltage

4 kV

Power consumption

approx. 0.2 VA (Ri=5 mΩ)

Overload for 1 sec.

120 A (sinusoidal)

Sampling rate

25.6 kHz / phase

Residual current monitoring I5 / I6 (RCM)

Rated current

30 mArms

Metering range

0 to 40 mArms

Triggering current

100 

µ

A

Resolution

µ

A

Crest factor

1.414 (related to 40mA)

Burden

4 Ohm

Overload for 1 sec.

5 A

Sustained overload

1 A

Overload for 20 ms

50 A

Maximum external burden

300 Ohm
(for cable break detection)

Digital inputs

2 digital inputs with a joint earth.
Maximum counter frequency

20 Hz

Response time (Jasic program)  200 ms

Input signal present

18 V to 28 V DC (typical 4 mA) 

(SELV or PELV supply)

Input signal not present

0 to 5 V DC,

current less than 0.5 mA

Digital outputs

2 digital outputs with a joint earth;

semiconductor relay, not short-circuit proof.

Supply voltage

20 - 30 V DC

(SELV or PELV supply)

Switching voltage

max. 60 V DC

Switching current

max. 50 mAeff AC/DC

Response time (Jasic program)

200 ms

Pulse output (energy pulse)

max. 20 Hz

Temperature measurement input

3-wire measurement.
Update time

1 second

Connectable sensors

PT100, PT1000, KTY83, KTY84

Total burden ( cable)

max. 4 kOhm

Cable length (Residual current monitoring, digital 
inputs and outputs, temperature measurement input)

Up to 30 m

Unshielded

More than 30 m

Shielded

RS485 interface
3-wire connection with 

A, B, GND

Protocol

Modbus RTU/slave,

Modbus RTU/master,

Modbus RTU/Gateway

Transmission rate

9.6 kbps, 19.2 kbps, 

38.4 kbps, 57.6 kbps, 

115.2 kbps, 921.6 kbps

Termination resistor

Can be activated by micro switch

Ethernet interface

Connection

RJ45

Function

Modbus Gateway,

Embedded Webserver (HTTP)

Protocols

CP/IP, EMAIL (SMTP),

DHCP-Client (BootP),

Modbus/TCP,

Modbus RTU over Ethernet, 

FTP, ICMP (Ping), NTP, TFTP, 

BACnet (Option), SNMP

Profi bus interface

Connection

SUB D 9-pole

Protocol

Profi bus DP/V0 as per EN 50170

Übertragungsrate

9.6 kBaud to 12 MBaud

Potential separation and electrical safety for the 
interfaces

The interfaces (RS485, Profi bus, Ethernet) have

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  a functional insulation against each other, to the measuring 

inputs RCM and temperature and to the digital I/Os.

The interfaces of the connected devices requires a double or 

reinforced insulation against the mains voltages (acc. to

IEC 61010-1: 2010).

Terminal connection capacity (supply voltage)

Connectable conductors.

Only one conductor can be connected per terminal!
Single core, multi-core,

fi ne-stranded

0.2 - 2.5 mm

2

, AWG 24 - 12

Terminal pins, core end sheath

0.25 - 2.5 mm

2

Tightening torque

0.5 - 0.6 Nm 

Stripping length

7 mm

Terminal connection capacity
(voltage and current measurement)

Connectable conductors.

Only one conductor can be connected per terminal!
Single core, multi-core,

fi ne-stranded

0.2 - 2.5 mm

2

, AWG 24-12

Terminal pins, core end sheath

0.25 - 2.5 mm

2

Tightening torque

0.5 - 0.6 Nm

Stripping length

7 mm

Terminal connection capacity
(temperature measurement input)

Connectable conductors.

Only one conductor can be connected per terminal!
Single core, multi-core,

fi ne-stranded

0.08 - 1.5 mm

2

Terminal pins, core end sheath

1 mm

2

Potential separation and electrical safety of the
temperature measurement input

The temperature measuring input has

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  no insulation for RCM measuring input. 

•  a functional insulation of the interfaces Ethernet, Profi bus, 

RS485 and digital I/Os.

An external temperature sensor requires a double insulation to 

plant parts with dangerous contact voltage (acc. to 

IEC 61010-1: 2010).

NOTE!
Further technical data can be found in
the user manual for the device.

Terminal connection capacity
(residual current monitoring (RCM))

Connectable conductors.

Only one conductor can be connected per terminal!
Rigid/fl exible

0.14 - 1.5 mm

2

, AWG 28-16

Flexible with core end sheath 

with plastic sleeve

0.2 - 1.5 mm

2

Flexible with core end sheath 

without plastic sleeve

0.2 - 1.5 mm

2

Tightening torque

0.2 - 0.25 Nm

Stripping length

7 mm

Terminal connection capacity
(digital inputs and outputs (I/Os))

Rigid/fl exible

0.14 - 1.5 mm

2

, AWG 28-16

Flexible with core end sheath 

with plastic sleeve

0.25 - 0.5 mm

2

Flexible with core end sheath 

without plastic sleeve

0.25 - 1.5 mm

2

Tightening torque

0.22 - 0.25 Nm

Stripping length

7 mm

Potential separation and electrical safety
of the RCM measurement inputs

The RCM-measurement inputs have

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  no insulation for temperature measurement input.

•  a functional insulation of the interfaces Ethernet, Profi bus, 

RS485 and digital I/Os.

The residual current transformer connected and the lines to be 

measured must each have at least one additional or a basic 

insulation per IEC61010-1:2010 for the mains voltage present.

Potential separation and electrical safety of the
digital inputs and outputs (I/Os)

The digital inputs and outputs have

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  a functional insulation against each other, to the interfaces 

Ethernet, Profi bus, RS485 and temperature measurement 

input.

The external auxiliary voltage to be connected must be

compliant with SELV or PELV.

Procedure in the event of faults

 16

Possible fault

Cause

Remedy

No display

External fuse for the power supply voltage has tripped. Replace fuse.

No current display

Measured voltage is not connected.

Connect the measured voltage.

Measurement current is not connected.

Connect measurement current.

Current displayed is too large 

or too small.

Current measurement in the wrong phase.

Check connection and correct if necessary.

Current transformer factor is incorrectly

programmed.

Read out and program the CT ratio at the current

transformer.

The current peak value at the measurement input

was exceeded by harmonic components.

Install current transformer with a larger CT ratio.

The current at the measurement input fell short of.

Install current transformer with a smaller current 

transformer ratio.

Voltage displayed is too large 

or too small.

Measurement in the wrong phase.

Check connection and correct if necessary.

Voltage transformer incorrectly programmed.

Read out and program the voltage transformer ratio 

at the voltage transformer.

Voltage displayed is

too small.

Measurement range exceeded.

Use voltage transformers.

The peak voltage value at the measurement input 

has been exceeded by the harmonics.

Please note!

Ensure the measurement inputs are not overloaded.

Phase shift ind/cap.

A current path is assigned to the wrong voltage

circuit.

Check connection and correct if necessary.

Effective power,

consumption/supply 

reversed.

At least one current transformer connection is mixed 

up/reversed.

Check connection and correct if necessary.

A current path is assigned to the wrong voltage 

circuit.

Check connection and correct if necessary.

Possible fault

Cause

Remedy

Effective power too large or 

too small.

The programmed CT ratio is incorrect.

Read out and program the current transformer trans-

formation ratio at the current transformer.

The current path is assigned to the wrong voltage 

circuit.

Check connection and correct if necessary.

The programmed voltage transformer ratio is 

incorrect.

Read out and program the voltage transformer trans-

formation ratio at the voltage transformer.

An output is not responding.

The output was incorrectly programmed.

Check programming and correct if necessary.

The output was incorrectly connected.

Check and correct connection if necessary.

Measurement range

exceeded display (overload).

Voltage and current measurement input outside

the measurement range (See section Measurement 

range exceeded).

Check and correct connection if necessary.

Use suitable voltage or current transformer.

Read voltage / current transformer ratio at the trans-

former and program.

No connection with

the device.

RS485

•  Device address is incorrect.

•  Different bus speeds (Baud rate).

•  Wrong protocol.

•  Termination missing.

•  Adjust the device address.

•  Adjust speed (baud rate).

•  Select the correct protocol.

•  Terminate bus with termination resistor.

Ethernet

•  IP Device address is incorrect.

•  Incorrect addressing mode.

•  Adjust IP device address.

•  Adjust the IP address assignment mode.

Device still does not work 

despite the above measures.

Device defective.

Send device and error description for verifi cation to 

the manufacturer.

NOTES!

•  Find out the Ethernet network settings for your 

device from your network administrator.

•  The description of additional communication 

interfaces can be found in the user manual for 
your device.

•  For more information about connection 

and communication of your device with the 
software, see the quick guide of software 
GridVis®.

Fig. "Main menu"

Fig. "Communication" window

General

1

2

Safety

Doc no. 2.054.013.1b 

05/2018

Part no. 33.03.336

Safety information
The installation manual does not represent a full 
listing of all necessary safety measures required 
for safe operation of the device.
Certain operating conditions may require further 
measures. The installation manual contains 
information that you must observe for your 
own personal safety and to avoid damage to 
property.

Symbols used:

c

This symbol is used as an 
addition to the safety instructions 
and warns of an electrical hazard.

m

This symbol is used as an 
addition to the safety instructions 
and warns of a potential hazard.

This symbol with the word 

NOTE! 

describes:

•  Procedures that do not pose 

any risks of injures.

•  Important information, 

procedures or handling steps.

Safety information is highlighted by a warning 
triangle and is indicated as follows depending 
on the degree of danger:

m

DANGER!

Indicates an imminent danger that 
causes severe or fatal injuries.

m

WARNING!

Indicates a potentially hazardous 
situation that can cause severe 
injuries or death.

m

CAUTION!

Indicates a potentially hazardous 
situation that can cause minor 
injuries or damage to property.

Safety measures
When operating electrical devices, certain parts 
of these devices are invariably subjected to 
hazardous voltage. Therefore, severe bodily 
injuries or damage to property can occur if they 
are not handled properly:

•  De-energise your device before starting 

work! Check that it is de-energised.

•  Before connecting connections, earth the 

device at the ground wire connection if 
present.

3

•  Hazardous voltages may be present in all 

switching parts that are connected to the 
power supply.

•  Hazardous voltages may also be present 

in the device even after disconnecting the 
supply voltage (capacitor storage).

•  Do not operate equipment with current 

transformer circuits while open.

•  Do not exceed the threshold values specifi ed 

in the user manual and on the rating plate. 
Also adhere to this when inspecting and 
commissioning.

•  Observe the safety and warning instructions in 

the documents that belong to the device! 

Qualifi ed staff

In order to prevent personal injuries and damage 
to property, only qualifi ed staff with electrical 
training may work on the device, with knowledge 
of

•  the national accident prevention regulations
•  the safety engineering standards
•  installing, commissioning and operating the 

device.

Proper use

The device is

•  intended to be installed in switching cabinets 

and small installation distributors (see step 3, 
"Installation").

•  not intended to be installed in vehicles! Using 

the device in non-stationary equipment is 
considered an extraordinary environmental 
condition and is only permitted with a special 
agreement.

•  not intended to be installed in environments 

with harmful oils, acids, gases, vapours, 
dusts, radiation, etc.

The prerequisites for faultless, safe operation 
of the device are proper transport and proper 
storage, set-up and installation, as well as 
operation and maintenance.

 14

 12

 11

5

Device short description

Install the device in a weather-protected front 
panel on switching cabinets.

Cut-out size:
138

+0.8

 x 138

+0.8

 mm

Ensure!
Adequate ventilation
•   The device is installed 

vertically!

•   Adherence to clearances 

from neighbouring 
components!

Fig.Mounting position,
rear view

Establish Ethernet connection to the PC

The three most common Ethernet connections 
between PC and device are described here:

PC

UMG

Ethernet 

(cross patch cable)

The PC and the UMG 512-PRO require a static IP address.

1.

The PC and the UMG 512-PRO require a static IP address.

Switch/

router

Patch cable

Patch cable

PC

UMG

2.

The DHCP server assigns IP addresses to the UMG 512-PRO and 
the PC automatically.

Patch cable

Patch cable

DHCP
server

PC

UMG

Switch/

router

3.

m

CAUTION!

Damage to property due to 
incorrect network settings

Incorrect network settings can cause faults in 
the IT network!
Obtain information from your network 
administrator about the correct Ethernet 
network settings for your device.

More information on device confi guration 
and communication is provided as of step 13.

Voltage measurement

The device has 4 voltage measurement inputs 
and is suitable for various connection variants.

m

CAUTION!

Risk of injuries or damage to 
the device

Failure to observe the connection conditions 
for the voltage measurement inputs can cause 
injuries to you or damage to the device.
Therefore, note the following:

• 

Do not connect the voltage measurement 
inputs

 

-

to DC voltage.

 

-

Do not use for voltage measurement in 
SELV circuits (safe extra low voltage).

• 

Voltages that exceed the allowed network 
rated voltages be connected via a voltage 
transformer.

• 

The voltage measurement inputs are to 
be equipped with a suitable, labelled fuse 
and isolation device located in the vicinity.

4

Network systems

Network systems and maximum rated voltages (DIN EN 61010-1/A1):

Three-phase four-conductor 

systems

with earthed neutral conductor

Three-phase four-conductor 

systems with non-earthed neutral 

conductor (IT networks)

Three-phase four-conductor 

systems, not earthed

Three-phase four-conductor 

systems with earthed phase

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

IEC U

L-N

 / U

L-L

: 417 VLN / 720 VLL

Only partially suitable for use in non-earthed 

networks (see step 7).

U

L-L

600 VLL

UL U

L-N

 / U

L-L

: 347 VLN / 600 VLL

Two-phase two-conductor 

systems, not earthed

Single-phase two-conductor 

systems with earthed neutral 

conductor

Separated single-phase three-

conductor systems with earthed 

neutral conductor

Application areas for the 
device:

•  2, 3 and 4 conductor 

networks (TN and TT 
networks).

•  In residential and 

industrial applications.

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

Only partially suitable 

for use in non-earthed 
networks (see step 7).

IEC

U

L-N 

480 VLN

IEC U

L-N

 / U

L-L

: 400 VLN / 690 VLL

UL

U

L-N 

480 VLN

UL U

L-N

 / U

L-L

: 347 VLN / 600 VLL

 Connecting the supply voltage

Fig. Connecting of 
supply voltage.

6

 15

Voltage measurement in the three-phase 
four-conductor system (TN, TT networks)
.
Note: Earth your system!

Voltage measurement in the three-phase three-
conductor system (IT network).
The device is only suitable for use in IT networks 
to a limited extent, as the measured voltage 
relative to the housing potential is measured and 
the input impedance of the device creates residual 
current against the earth. The residual current can 
trigger insulation monitoring in IT networks.
Connection variants with voltage transformers 
are suitable for IT networks without 
restrictions!

Schematic diagram for voltage measurement

Fig. Schematic diagram, device in an IT network without N.

Current measurement

The device

•  is intended for connecting current 

transformers with secondary currents 
of ../1 A and ../5 A.

•  does not measure DC.
•  has current measurement inputs that can 

be loaded with a maximum of 120 A for 
1 second. 

Fig. Connection 
example for "Current 
measurement via
current transformers".

The current direction can be corrected via 
the serial interfaces or on the device for each 
phase. If incorrectly connected, a subsequent 
re-connection of the current transformer is not 
required.

8

7

Confi guration

After the power returns, the device displays the 
fi rst measured value indication "Home".

•  Press button 1 "ESC" to access the 

"Confi guration" menu:

•  Use buttons 3 and 4 to select the menu entry 

to be adjusted in the "Confi guration" menu. 

•  Confi rm the selected menu entry by pressing 

button 6 "Enter"!

Press button 1 "ESC" to change back to the 
higher menu level.

The "Communication" menu entry takes you to 
the following window:

Your device has 1 Ethernet interface and 1 
RS485 interface (fi eld bus) for communication, 
which can be adjusted in the "Communication" 
window.

NOTE!
Detailed information on all menu entries and their settings can be found in the user manual.

 13

L1

N PE

L3

L2

Fig. "Voltage measurement" 
connection example.

NOTE!
As an alternative to the fuse and circuit 
breaker, you can use a line safety switch.

m

CAUTION!

Damage to property due to not 
observing the connection conditions or 
impermissible overvoltages

Your device can be damaged or destroyed by a failure to 
comply with the connection conditions or by exceeding the 
permissible voltage range.
Before connecting the device to the supply voltage, 
check:

• 

The ground wire connection must be connected with 
the system earthing!

• 

The voltage and frequency must meet the 
specifi cations on the rating plate! Adhere to the 
threshold values as described in the user manual!

• 

In building installations, the supply voltage must be 
protected with a UL/IEC approved circuit breaker / 
a fuse!

• 

The circuit breaker

 

-

must be easily accessible for the user and be 
installed close to the device.

 

-

must be labelled for the relevant device.

• 

Do not connect the supply voltage to the voltage 
transformers.

• 

Provide a fuse for the neutral conductor if the 
source's neutral conductor connection is not earthed.

Fig. Schematic diagram, device in a 

TN network.

PE

347V/600V 50/60Hz

L2

L3

N

L1

N

L1

240V 
50/60Hz

Earthing 
of the 
system

DC

AC/DC

Auxiliary supply

Voltage measurement

4M

4M

4M

4M

V1

V3

V2

Vref

4M

V4

UMG 512-PRO

600V 50/60Hz

DC

AC/DC

L2

L3

Auxiliary supply

Voltage measurement

4M

4M

4M

4M

V1

V3

V2

4M

V4

Earthing of
the system

Impedance

L1

UMG 512-PRO

Vref

8

Connection variants for baseline measurement inputs 1-3 (voltage and current)

Measurement in a three-phase 4-conductor network 

with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

The device requires the mains frequency 
(range from 15 Hz to 440 Hz) to measure and 
calculate measured values.

It is not necessary to confi gure connection 
schematics for measurement inputs V4 and I4.

Measurement in a three-phase 4-conductor network 

with symmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement via 3 voltage transformers in a three-phase 

4-conductor network with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement via 2 voltage transformers in a three-phase 

4-conductor network with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement via 2 current transformers in a three-phase 

3-conductor network with symmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement in a three-phase 4-conductor network 

with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement of one phase in a three-phase 4-conductor network.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a single-phase 3-conductor network. 

I3 and U3 are not calculated and set to zero.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

NOTE!
Further information on

•  supporting measurements via inputs 

V4 (L4) and I4, and

•  current data and current transformer 

data

is provided in the user manual.

9

The device has 3 types of address allocation for the 
Ethernet interface (TCP/IP) in 

DHCP mode:

1. 

OFF (fi xed IP address)
The user selects the IP address, network mask 
and gateway on the device. Use this mode for 
straightforward networks without DHCP servers. 

2. 

BOOTP
Automatically integrates your device into an 
existing network. BOOTP is an older protocol and 
has a smaller scope of functions than DHCP.

3. 

DHCP
When started, the device automatically receives 
the IP address, the network mask and the gateway 
from the DHCP server.

Standard setting for the device is DHCP!

Communication via Ethernet interface (TCP/IP)

c

WARNING!

Risk of injury due to electric 
voltage!

Severe bodily injuries or death can occur due 
to:

•  touching bare or stripped wires that are 

live,

•  current measurement inputs that are 

dangerous to touch on the device and on 
the current transformers.

De-energise your device before starting 
work! Check that it is de-energised.
Earth the system. To do this, use the earth 
connection points with the earthing symbol. 
Also earth the secondary windings on the 
current transformer and all metal parts on 
the transformer that are able to be touched.

RECOMMENDATION!
For a PE/N measurement, connect the 
protective earth (PE) to measurement 
input V4. Do not use a green and yellow 
wire for this as the conductor does not 
have any protective function!

The voltage measurement inputs are designed for 
measurements in low voltage networks, in which the 
following rated voltages occur: 

•  Per IEC - 417 V phase to earth and 720 V phase 

to phase in the 4-conductor system.

•  Per UL - 347 V phase to earth and 600 V phase to 

phase in the 4-conductor system.

•  600 V phase to phase in the 3-conductor system.

The measurement and surge voltages meet 
overvoltage category 600 V CATIII.

User manual:

The device is a class A power quality analyser 
that

•  measures and calculates electrical variables 

such as voltage, current, power, energy, 
harmonics, etc. in building installations, 
on distribution units, circuit breakers and 
busbar trunking systems.

•  measures and monitors residual currents 

(RCM) and currents at the central 
grounding point (CGP). The residual current 
monitoring is carried out via an external 
residual current transformer (30 mA rated 
current) on the current measurement inputs 
I5 and I6.

•  displays measurement results and transmits 

them via interfaces (Ethernet, Modbus, 
Profi bus).

m

CAUTION!

Damage to property due to 
not observing the installation 
instructions

Failing to observe the installation instructions 
can damage or destroy your device.
Ensure that there is adequate air circulation 
in your installation environment; if the 
ambient temperatures are high, ensure there 
is adequate cooling if required.

NOTE!
Detailed information on the device 
functions and data can be found in the 
user manual.

Circuit breaker

Fuse

L1

N PE

L3

L2

Protective 
conductor

Ground wire 
connection

The supply voltage level for your device is 
specifi ed on the rating plate.
After connecting the supply voltage, the fi rst 
measured value indication "Home" appears 
on the display. If no indication appears, check 
whether the supply voltage is within the rated 
voltage range.

c

WARNING!

Risk of injury due to electric 
voltage!

Severe bodily injuries or death can occur due to

•  touching bare or stripped wires that are live.
•  device inputs that are dangerous to touch.

De-energise your device before starting 
work! Check that it is de-energised.

Circuit
breaker

L1

N PE

L3

L2

S

1

S

2

S

1

S

2

S

1

S

2

S

1

S

2

Ethernet connection

Patch cable

Recommendation:

Use at least CAT5 
cables!

L2 L3

N L1

Load

PE

Residual current monitoring (RCM) via I5 and I6

"Residual current monitoring 
via current transformer" 
connection variant

Suitable residual current transformers with 
a rated current of 30 mA are connected to 
terminals 4 and 5 (

I5) and terminals 6 and 7 

(

I6).

The UMG 512-PRO measures residual currents 
in accordance with IEC/TR 60755 (2008-01), 

 

Type A

NOTE!

•  The transformation ratios for 

the residual current transformer 
inputs can be confi gured using the 
GridVis® software.

•  The 

"Energy Analyser 512-PRO 

with residual current monitoring 
via measurement inputs I5/I6"
 
connection variant and further 
information are provided in the
user manual.

•  It is not necessary to confi gure 

a connection schematic for 
measurement inputs I5 and I6.

The device is suitable for use as a residual 
current monitoring device (RCM) to monitor

•  AC
•  DC and
•  pulsing DC.

 10

Fuse
(UL/IEC listed)

Deutsche V

ersion:

siehe V

or

derseite

Janitza electronics GmbH
Vor dem Polstück 6
D-35633 Lahnau / Germany
Support tel. +49 6441 9642-22
Fax +49 6441 9642-30
e-mail: [email protected]
www.janitza.com

www

.janitza.com

Assembly

Power Quality Analyser

UMG 512-PRO

Installation manual

Residual current monitoring (RCM)

 Installation

 Device settings

Disclaimer

The observance of the information products 
for the devices is a prerequisite for safe opera-
tion and to achieve the stipulated performance 
characteristics and product characteristics. 
Janitza electronics GmbH accepts no liability 
for injuries to personnel, property damage 
or fi nancial losses arising due to a failure to 
comply with the information products. Ensure 
that your information products are accessible 
and legible.

Further information can be found on our web-
site www.janitza.com at Support > Downloads.

Copyright notice

© 2016 - Janitza electronics GmbH - Lahnau.
All rights reserved. Duplication, editing, 
distribution and any form of exploitation, also 
as excerpts, is prohibited.

Subject to technical amendments

•  Make sure that your device agrees with the 

installation manual.

•  Read and understand fi rst product-related 

documents.

•  Keep product supporting documentation 

throughout the life available and, where ap-
propriate, to pass on to subsequent users.

•  Please inform yourself about device revisi-

ons and the associated adjustments to the 
product-related documentation on
www.janitza.com.

 

Disposal

Please observe national regulations! 
If disposing of individual parts, please dispose 
of them in accordance with their nature and 
existing country-specifi c regulations, for 
example as:

•  Electrical scrap
•  Plastics
•  Metals

Or, task a certifi ed disposal business with the 
scrapping.

Relevant laws, applied standards and 
directives

The laws, standards and directives for the 
device applied by Janitza electronic GmbH 
can be found in the declaration of conformity 
on our website.

The UMG 512-PRO is operated via 6 function 
keys for

•  selecting measured value indications.
•  Navigation within the menus.
•  Editing device settings.

Key

Function

•  Back to home screen
•  Exits selection menu

•  Select digit (to the left)
•  Selects main values (U, I, P ...)
•  Changes (number -1)
•  By-values (select)
•  Selects menu item
•  Changes (1)
•  By-values (select)
•  Selects menu item
•  Select digit (to the right)
•  Selects main values (U, I, P ...)

•  Opens selection menu
•  Confi rm selection

Operation and button functions

Fig. UMG 512-PRO display - 
"Home" measured value indication 

NOTE! Current and voltage transformer 
ratios.
The current and voltage transformer ratios can 
be conveniently confi gured via

•  the Confi guration > Measurement > 

Measurement transformer > MAIN 
measurement transformer menu.

•  the GridVis® software.

More details on current transformers and 
voltage transformer ratios and their adjustment 
can be found in the user manual.

NOTE!
For further information on operating, 
displays and button functions on your 
device, see the user manual.

Display title

Measured 
values

Labelling of the 
function keys
Function keys

Technical data

General

Net weight

(with attached connectors)

approx. 1080 g

Device dimensions

l = 144 mm,

b = 144 mm,

h = 75 mm

Battery

Typ Li-Mn CR2450, 3 V

(approval i.a.w. UL 1642)

Clock

(in temperature range 

-40°C to 85°C)

+-5ppm (corresponding to 

approx. 3 minutes p.a.)

Transport and storage

The following information applies to devices which are trans-

ported or stored in the original packaging.
Free fall

1 m

Temperature

-25° C to +70° C

Ambient conditions during operation

The device

•  weather-protected and stationary use.

•  connected to the protective conductor connection.

•  corresponds to protection class I in acc. with IEC 60536

(VDE 0106, Part 1).

Working temperature range

-10° C .. +55° C

Relative humidity

5 to 95% at 25°C

without condensation

Operating altitude

0 to 2000 m above sea level

Pollution degree

2

Einbaulage

vertical

Lüftung

no forced ventilation required.

Protection against ingress of 

solid foreign bodies and water

- Front side

- Rear side

IP40 in acc. with EN60529

IP20 in acc. with EN60529

Supply voltage

Protection of the  
supply voltage (fuse)

6 A, Char B

(approved i.a.w. UL/IEC)

Installations of
overvoltage category

300 V CAT III

Nominal range

Option 230 V

AC 95 V - 240 V (50/60 Hz) or

DC 80 V - 300 V
Option 24 V

AC 48 V - 110 V (50/60 Hz) or

DC 24 V - 150 V

Operating range

+-10% of nominal range

Power consumption

Option 230 V: max. 14 VA / 7 W

Option 24 V: max. 13 VA / 9 W

Voltage measurement

Three-phase 4-conductor 
systems with rated voltages 
(L-N/L-L) up to

IEC: max. 417 V/720 V

UL: max. 347 V/600 V

Three-phase 3-conductor 
systems with rated voltages 
(L-L) up to

max. 600 V (+10%)

Overvoltage category

600 V CAT III

Rated surge voltage

6 kV

Protection of

voltage measurement

1 - 10 A

(With IEC / UL approval)

Measurement range L-N 

1)

0 .. 600 Vrms

Measurement range L-L 

1)

0 .. 1000 Vrms

Resolution

0.01 V

Crest factor

1.6 (related to 600 Vrms)

Impedance

4 MΩ / phase

Power consumption

ca. 0.1 VA

Sampling rate

25.6 kHz / phase

Transients

39 µs

Frequency range of

the fundamental oscillation

- resolution

15 Hz .. 440 Hz
0.001 Hz

1)  The device can only determine measured values, if at least 

a voltage L-N greater than 10Veff or a voltage L-L of greater 
than 18Veff is present at one voltage measurement input.

2)  Udin = arranged input voltage according to

DIN EN 61000-4-30

Current measurement

Rated current

5 A

Metering range

0.005 to 7 Arms

Measurement range exceeded 
(overload)

From 8.5 Arms

Crest factor

1.41

Resolution

0.1 mA

Overvoltage category

Option 230 V: 300 V CAT III

Option 24 V: 300 V CAT II

Measurement surge voltage

4 kV

Power consumption

approx. 0.2 VA (Ri=5 mΩ)

Overload for 1 sec.

120 A (sinusoidal)

Sampling rate

25.6 kHz / phase

Residual current monitoring I5 / I6 (RCM)

Rated current

30 mArms

Metering range

0 to 40 mArms

Triggering current

100 

µ

A

Resolution

µ

A

Crest factor

1.414 (related to 40mA)

Burden

4 Ohm

Overload for 1 sec.

5 A

Sustained overload

1 A

Overload for 20 ms

50 A

Maximum external burden

300 Ohm
(for cable break detection)

Digital inputs

2 digital inputs with a joint earth.
Maximum counter frequency

20 Hz

Response time (Jasic program)  200 ms

Input signal present

18 V to 28 V DC (typical 4 mA) 

(SELV or PELV supply)

Input signal not present

0 to 5 V DC,

current less than 0.5 mA

Digital outputs

2 digital outputs with a joint earth;

semiconductor relay, not short-circuit proof.

Supply voltage

20 - 30 V DC

(SELV or PELV supply)

Switching voltage

max. 60 V DC

Switching current

max. 50 mAeff AC/DC

Response time (Jasic program)

200 ms

Pulse output (energy pulse)

max. 20 Hz

Temperature measurement input

3-wire measurement.
Update time

1 second

Connectable sensors

PT100, PT1000, KTY83, KTY84

Total burden ( cable)

max. 4 kOhm

Cable length (Residual current monitoring, digital 
inputs and outputs, temperature measurement input)

Up to 30 m

Unshielded

More than 30 m

Shielded

RS485 interface
3-wire connection with 

A, B, GND

Protocol

Modbus RTU/slave,

Modbus RTU/master,

Modbus RTU/Gateway

Transmission rate

9.6 kbps, 19.2 kbps, 

38.4 kbps, 57.6 kbps, 

115.2 kbps, 921.6 kbps

Termination resistor

Can be activated by micro switch

Ethernet interface

Connection

RJ45

Function

Modbus Gateway,

Embedded Webserver (HTTP)

Protocols

CP/IP, EMAIL (SMTP),

DHCP-Client (BootP),

Modbus/TCP,

Modbus RTU over Ethernet, 

FTP, ICMP (Ping), NTP, TFTP, 

BACnet (Option), SNMP

Profi bus interface

Connection

SUB D 9-pole

Protocol

Profi bus DP/V0 as per EN 50170

Übertragungsrate

9.6 kBaud to 12 MBaud

Potential separation and electrical safety for the 
interfaces

The interfaces (RS485, Profi bus, Ethernet) have

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  a functional insulation against each other, to the measuring 

inputs RCM and temperature and to the digital I/Os.

The interfaces of the connected devices requires a double or 

reinforced insulation against the mains voltages (acc. to

IEC 61010-1: 2010).

Terminal connection capacity (supply voltage)

Connectable conductors.

Only one conductor can be connected per terminal!
Single core, multi-core,

fi ne-stranded

0.2 - 2.5 mm

2

, AWG 24 - 12

Terminal pins, core end sheath

0.25 - 2.5 mm

2

Tightening torque

0.5 - 0.6 Nm 

Stripping length

7 mm

Terminal connection capacity
(voltage and current measurement)

Connectable conductors.

Only one conductor can be connected per terminal!
Single core, multi-core,

fi ne-stranded

0.2 - 2.5 mm

2

, AWG 24-12

Terminal pins, core end sheath

0.25 - 2.5 mm

2

Tightening torque

0.5 - 0.6 Nm

Stripping length

7 mm

Terminal connection capacity
(temperature measurement input)

Connectable conductors.

Only one conductor can be connected per terminal!
Single core, multi-core,

fi ne-stranded

0.08 - 1.5 mm

2

Terminal pins, core end sheath

1 mm

2

Potential separation and electrical safety of the
temperature measurement input

The temperature measuring input has

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  no insulation for RCM measuring input. 

•  a functional insulation of the interfaces Ethernet, Profi bus, 

RS485 and digital I/Os.

An external temperature sensor requires a double insulation to 

plant parts with dangerous contact voltage (acc. to 

IEC 61010-1: 2010).

NOTE!
Further technical data can be found in
the user manual for the device.

Terminal connection capacity
(residual current monitoring (RCM))

Connectable conductors.

Only one conductor can be connected per terminal!
Rigid/fl exible

0.14 - 1.5 mm

2

, AWG 28-16

Flexible with core end sheath 

with plastic sleeve

0.2 - 1.5 mm

2

Flexible with core end sheath 

without plastic sleeve

0.2 - 1.5 mm

2

Tightening torque

0.2 - 0.25 Nm

Stripping length

7 mm

Terminal connection capacity
(digital inputs and outputs (I/Os))

Rigid/fl exible

0.14 - 1.5 mm

2

, AWG 28-16

Flexible with core end sheath 

with plastic sleeve

0.25 - 0.5 mm

2

Flexible with core end sheath 

without plastic sleeve

0.25 - 1.5 mm

2

Tightening torque

0.22 - 0.25 Nm

Stripping length

7 mm

Potential separation and electrical safety
of the RCM measurement inputs

The RCM-measurement inputs have

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  no insulation for temperature measurement input.

•  a functional insulation of the interfaces Ethernet, Profi bus, 

RS485 and digital I/Os.

The residual current transformer connected and the lines to be 

measured must each have at least one additional or a basic 

insulation per IEC61010-1:2010 for the mains voltage present.

Potential separation and electrical safety of the
digital inputs and outputs (I/Os)

The digital inputs and outputs have

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  a functional insulation against each other, to the interfaces 

Ethernet, Profi bus, RS485 and temperature measurement 

input.

The external auxiliary voltage to be connected must be

compliant with SELV or PELV.

Procedure in the event of faults

 16

Possible fault

Cause

Remedy

No display

External fuse for the power supply voltage has tripped. Replace fuse.

No current display

Measured voltage is not connected.

Connect the measured voltage.

Measurement current is not connected.

Connect measurement current.

Current displayed is too large 

or too small.

Current measurement in the wrong phase.

Check connection and correct if necessary.

Current transformer factor is incorrectly

programmed.

Read out and program the CT ratio at the current

transformer.

The current peak value at the measurement input

was exceeded by harmonic components.

Install current transformer with a larger CT ratio.

The current at the measurement input fell short of.

Install current transformer with a smaller current 

transformer ratio.

Voltage displayed is too large 

or too small.

Measurement in the wrong phase.

Check connection and correct if necessary.

Voltage transformer incorrectly programmed.

Read out and program the voltage transformer ratio 

at the voltage transformer.

Voltage displayed is

too small.

Measurement range exceeded.

Use voltage transformers.

The peak voltage value at the measurement input 

has been exceeded by the harmonics.

Please note!

Ensure the measurement inputs are not overloaded.

Phase shift ind/cap.

A current path is assigned to the wrong voltage

circuit.

Check connection and correct if necessary.

Effective power,

consumption/supply 

reversed.

At least one current transformer connection is mixed 

up/reversed.

Check connection and correct if necessary.

A current path is assigned to the wrong voltage 

circuit.

Check connection and correct if necessary.

Possible fault

Cause

Remedy

Effective power too large or 

too small.

The programmed CT ratio is incorrect.

Read out and program the current transformer trans-

formation ratio at the current transformer.

The current path is assigned to the wrong voltage 

circuit.

Check connection and correct if necessary.

The programmed voltage transformer ratio is 

incorrect.

Read out and program the voltage transformer trans-

formation ratio at the voltage transformer.

An output is not responding.

The output was incorrectly programmed.

Check programming and correct if necessary.

The output was incorrectly connected.

Check and correct connection if necessary.

Measurement range

exceeded display (overload).

Voltage and current measurement input outside

the measurement range (See section Measurement 

range exceeded).

Check and correct connection if necessary.

Use suitable voltage or current transformer.

Read voltage / current transformer ratio at the trans-

former and program.

No connection with

the device.

RS485

•  Device address is incorrect.

•  Different bus speeds (Baud rate).

•  Wrong protocol.

•  Termination missing.

•  Adjust the device address.

•  Adjust speed (baud rate).

•  Select the correct protocol.

•  Terminate bus with termination resistor.

Ethernet

•  IP Device address is incorrect.

•  Incorrect addressing mode.

•  Adjust IP device address.

•  Adjust the IP address assignment mode.

Device still does not work 

despite the above measures.

Device defective.

Send device and error description for verifi cation to 

the manufacturer.

NOTES!

•  Find out the Ethernet network settings for your 

device from your network administrator.

•  The description of additional communication 

interfaces can be found in the user manual for 
your device.

•  For more information about connection 

and communication of your device with the 
software, see the quick guide of software 
GridVis®.

Fig. "Main menu"

Fig. "Communication" window

General

1

2

Safety

Doc no. 2.054.013.1b 

05/2018

Part no. 33.03.336

Safety information
The installation manual does not represent a full 
listing of all necessary safety measures required 
for safe operation of the device.
Certain operating conditions may require further 
measures. The installation manual contains 
information that you must observe for your 
own personal safety and to avoid damage to 
property.

Symbols used:

c

This symbol is used as an 
addition to the safety instructions 
and warns of an electrical hazard.

m

This symbol is used as an 
addition to the safety instructions 
and warns of a potential hazard.

This symbol with the word 

NOTE! 

describes:

•  Procedures that do not pose 

any risks of injures.

•  Important information, 

procedures or handling steps.

Safety information is highlighted by a warning 
triangle and is indicated as follows depending 
on the degree of danger:

m

DANGER!

Indicates an imminent danger that 
causes severe or fatal injuries.

m

WARNING!

Indicates a potentially hazardous 
situation that can cause severe 
injuries or death.

m

CAUTION!

Indicates a potentially hazardous 
situation that can cause minor 
injuries or damage to property.

Safety measures
When operating electrical devices, certain parts 
of these devices are invariably subjected to 
hazardous voltage. Therefore, severe bodily 
injuries or damage to property can occur if they 
are not handled properly:

•  De-energise your device before starting 

work! Check that it is de-energised.

•  Before connecting connections, earth the 

device at the ground wire connection if 
present.

3

•  Hazardous voltages may be present in all 

switching parts that are connected to the 
power supply.

•  Hazardous voltages may also be present 

in the device even after disconnecting the 
supply voltage (capacitor storage).

•  Do not operate equipment with current 

transformer circuits while open.

•  Do not exceed the threshold values specifi ed 

in the user manual and on the rating plate. 
Also adhere to this when inspecting and 
commissioning.

•  Observe the safety and warning instructions in 

the documents that belong to the device! 

Qualifi ed staff

In order to prevent personal injuries and damage 
to property, only qualifi ed staff with electrical 
training may work on the device, with knowledge 
of

•  the national accident prevention regulations
•  the safety engineering standards
•  installing, commissioning and operating the 

device.

Proper use

The device is

•  intended to be installed in switching cabinets 

and small installation distributors (see step 3, 
"Installation").

•  not intended to be installed in vehicles! Using 

the device in non-stationary equipment is 
considered an extraordinary environmental 
condition and is only permitted with a special 
agreement.

•  not intended to be installed in environments 

with harmful oils, acids, gases, vapours, 
dusts, radiation, etc.

The prerequisites for faultless, safe operation 
of the device are proper transport and proper 
storage, set-up and installation, as well as 
operation and maintenance.

 14

 12

 11

5

Device short description

Install the device in a weather-protected front 
panel on switching cabinets.

Cut-out size:
138

+0.8

 x 138

+0.8

 mm

Ensure!
Adequate ventilation
•   The device is installed 

vertically!

•   Adherence to clearances 

from neighbouring 
components!

Fig.Mounting position,
rear view

Establish Ethernet connection to the PC

The three most common Ethernet connections 
between PC and device are described here:

PC

UMG

Ethernet 

(cross patch cable)

The PC and the UMG 512-PRO require a static IP address.

1.

The PC and the UMG 512-PRO require a static IP address.

Switch/

router

Patch cable

Patch cable

PC

UMG

2.

The DHCP server assigns IP addresses to the UMG 512-PRO and 
the PC automatically.

Patch cable

Patch cable

DHCP
server

PC

UMG

Switch/

router

3.

m

CAUTION!

Damage to property due to 
incorrect network settings

Incorrect network settings can cause faults in 
the IT network!
Obtain information from your network 
administrator about the correct Ethernet 
network settings for your device.

More information on device confi guration 
and communication is provided as of step 13.

Voltage measurement

The device has 4 voltage measurement inputs 
and is suitable for various connection variants.

m

CAUTION!

Risk of injuries or damage to 
the device

Failure to observe the connection conditions 
for the voltage measurement inputs can cause 
injuries to you or damage to the device.
Therefore, note the following:

• 

Do not connect the voltage measurement 
inputs

 

-

to DC voltage.

 

-

Do not use for voltage measurement in 
SELV circuits (safe extra low voltage).

• 

Voltages that exceed the allowed network 
rated voltages be connected via a voltage 
transformer.

• 

The voltage measurement inputs are to 
be equipped with a suitable, labelled fuse 
and isolation device located in the vicinity.

4

Network systems

Network systems and maximum rated voltages (DIN EN 61010-1/A1):

Three-phase four-conductor 

systems

with earthed neutral conductor

Three-phase four-conductor 

systems with non-earthed neutral 

conductor (IT networks)

Three-phase four-conductor 

systems, not earthed

Three-phase four-conductor 

systems with earthed phase

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

IEC U

L-N

 / U

L-L

: 417 VLN / 720 VLL

Only partially suitable for use in non-earthed 

networks (see step 7).

U

L-L

600 VLL

UL U

L-N

 / U

L-L

: 347 VLN / 600 VLL

Two-phase two-conductor 

systems, not earthed

Single-phase two-conductor 

systems with earthed neutral 

conductor

Separated single-phase three-

conductor systems with earthed 

neutral conductor

Application areas for the 
device:

•  2, 3 and 4 conductor 

networks (TN and TT 
networks).

•  In residential and 

industrial applications.

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

Only partially suitable 

for use in non-earthed 
networks (see step 7).

IEC

U

L-N 

480 VLN

IEC U

L-N

 / U

L-L

: 400 VLN / 690 VLL

UL

U

L-N 

480 VLN

UL U

L-N

 / U

L-L

: 347 VLN / 600 VLL

 Connecting the supply voltage

Fig. Connecting of 
supply voltage.

6

 15

Voltage measurement in the three-phase 
four-conductor system (TN, TT networks)
.
Note: Earth your system!

Voltage measurement in the three-phase three-
conductor system (IT network).
The device is only suitable for use in IT networks 
to a limited extent, as the measured voltage 
relative to the housing potential is measured and 
the input impedance of the device creates residual 
current against the earth. The residual current can 
trigger insulation monitoring in IT networks.
Connection variants with voltage transformers 
are suitable for IT networks without 
restrictions!

Schematic diagram for voltage measurement

Fig. Schematic diagram, device in an IT network without N.

Current measurement

The device

•  is intended for connecting current 

transformers with secondary currents 
of ../1 A and ../5 A.

•  does not measure DC.
•  has current measurement inputs that can 

be loaded with a maximum of 120 A for 
1 second. 

Fig. Connection 
example for "Current 
measurement via
current transformers".

The current direction can be corrected via 
the serial interfaces or on the device for each 
phase. If incorrectly connected, a subsequent 
re-connection of the current transformer is not 
required.

8

7

Confi guration

After the power returns, the device displays the 
fi rst measured value indication "Home".

•  Press button 1 "ESC" to access the 

"Confi guration" menu:

•  Use buttons 3 and 4 to select the menu entry 

to be adjusted in the "Confi guration" menu. 

•  Confi rm the selected menu entry by pressing 

button 6 "Enter"!

Press button 1 "ESC" to change back to the 
higher menu level.

The "Communication" menu entry takes you to 
the following window:

Your device has 1 Ethernet interface and 1 
RS485 interface (fi eld bus) for communication, 
which can be adjusted in the "Communication" 
window.

NOTE!
Detailed information on all menu entries and their settings can be found in the user manual.

 13

L1

N PE

L3

L2

Fig. "Voltage measurement" 
connection example.

NOTE!
As an alternative to the fuse and circuit 
breaker, you can use a line safety switch.

m

CAUTION!

Damage to property due to not 
observing the connection conditions or 
impermissible overvoltages

Your device can be damaged or destroyed by a failure to 
comply with the connection conditions or by exceeding the 
permissible voltage range.
Before connecting the device to the supply voltage, 
check:

• 

The ground wire connection must be connected with 
the system earthing!

• 

The voltage and frequency must meet the 
specifi cations on the rating plate! Adhere to the 
threshold values as described in the user manual!

• 

In building installations, the supply voltage must be 
protected with a UL/IEC approved circuit breaker / 
a fuse!

• 

The circuit breaker

 

-

must be easily accessible for the user and be 
installed close to the device.

 

-

must be labelled for the relevant device.

• 

Do not connect the supply voltage to the voltage 
transformers.

• 

Provide a fuse for the neutral conductor if the 
source's neutral conductor connection is not earthed.

Fig. Schematic diagram, device in a 

TN network.

PE

347V/600V 50/60Hz

L2

L3

N

L1

N

L1

240V 
50/60Hz

Earthing 
of the 
system

DC

AC/DC

Auxiliary supply

Voltage measurement

4M

4M

4M

4M

V1

V3

V2

Vref

4M

V4

UMG 512-PRO

600V 50/60Hz

DC

AC/DC

L2

L3

Auxiliary supply

Voltage measurement

4M

4M

4M

4M

V1

V3

V2

4M

V4

Earthing of
the system

Impedance

L1

UMG 512-PRO

Vref

8

Connection variants for baseline measurement inputs 1-3 (voltage and current)

Measurement in a three-phase 4-conductor network 

with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

The device requires the mains frequency 
(range from 15 Hz to 440 Hz) to measure and 
calculate measured values.

It is not necessary to confi gure connection 
schematics for measurement inputs V4 and I4.

Measurement in a three-phase 4-conductor network 

with symmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement via 3 voltage transformers in a three-phase 

4-conductor network with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement via 2 voltage transformers in a three-phase 

4-conductor network with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement via 2 current transformers in a three-phase 

3-conductor network with symmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement in a three-phase 4-conductor network 

with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement of one phase in a three-phase 4-conductor network.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a single-phase 3-conductor network. 

I3 and U3 are not calculated and set to zero.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

NOTE!
Further information on

•  supporting measurements via inputs 

V4 (L4) and I4, and

•  current data and current transformer 

data

is provided in the user manual.

9

The device has 3 types of address allocation for the 
Ethernet interface (TCP/IP) in 

DHCP mode:

1. 

OFF (fi xed IP address)
The user selects the IP address, network mask 
and gateway on the device. Use this mode for 
straightforward networks without DHCP servers. 

2. 

BOOTP
Automatically integrates your device into an 
existing network. BOOTP is an older protocol and 
has a smaller scope of functions than DHCP.

3. 

DHCP
When started, the device automatically receives 
the IP address, the network mask and the gateway 
from the DHCP server.

Standard setting for the device is DHCP!

Communication via Ethernet interface (TCP/IP)

c

WARNING!

Risk of injury due to electric 
voltage!

Severe bodily injuries or death can occur due 
to:

•  touching bare or stripped wires that are 

live,

•  current measurement inputs that are 

dangerous to touch on the device and on 
the current transformers.

De-energise your device before starting 
work! Check that it is de-energised.
Earth the system. To do this, use the earth 
connection points with the earthing symbol. 
Also earth the secondary windings on the 
current transformer and all metal parts on 
the transformer that are able to be touched.

RECOMMENDATION!
For a PE/N measurement, connect the 
protective earth (PE) to measurement 
input V4. Do not use a green and yellow 
wire for this as the conductor does not 
have any protective function!

The voltage measurement inputs are designed for 
measurements in low voltage networks, in which the 
following rated voltages occur: 

•  Per IEC - 417 V phase to earth and 720 V phase 

to phase in the 4-conductor system.

•  Per UL - 347 V phase to earth and 600 V phase to 

phase in the 4-conductor system.

•  600 V phase to phase in the 3-conductor system.

The measurement and surge voltages meet 
overvoltage category 600 V CATIII.

User manual:

The device is a class A power quality analyser 
that

•  measures and calculates electrical variables 

such as voltage, current, power, energy, 
harmonics, etc. in building installations, 
on distribution units, circuit breakers and 
busbar trunking systems.

•  measures and monitors residual currents 

(RCM) and currents at the central 
grounding point (CGP). The residual current 
monitoring is carried out via an external 
residual current transformer (30 mA rated 
current) on the current measurement inputs 
I5 and I6.

•  displays measurement results and transmits 

them via interfaces (Ethernet, Modbus, 
Profi bus).

m

CAUTION!

Damage to property due to 
not observing the installation 
instructions

Failing to observe the installation instructions 
can damage or destroy your device.
Ensure that there is adequate air circulation 
in your installation environment; if the 
ambient temperatures are high, ensure there 
is adequate cooling if required.

NOTE!
Detailed information on the device 
functions and data can be found in the 
user manual.

Circuit breaker

Fuse

L1

N PE

L3

L2

Protective 
conductor

Ground wire 
connection

The supply voltage level for your device is 
specifi ed on the rating plate.
After connecting the supply voltage, the fi rst 
measured value indication "Home" appears 
on the display. If no indication appears, check 
whether the supply voltage is within the rated 
voltage range.

c

WARNING!

Risk of injury due to electric 
voltage!

Severe bodily injuries or death can occur due to

•  touching bare or stripped wires that are live.
•  device inputs that are dangerous to touch.

De-energise your device before starting 
work! Check that it is de-energised.

Circuit
breaker

L1

N PE

L3

L2

S

1

S

2

S

1

S

2

S

1

S

2

S

1

S

2

Ethernet connection

Patch cable

Recommendation:

Use at least CAT5 
cables!

L2 L3

N L1

Load

PE

Residual current monitoring (RCM) via I5 and I6

"Residual current monitoring 
via current transformer" 
connection variant

Suitable residual current transformers with 
a rated current of 30 mA are connected to 
terminals 4 and 5 (

I5) and terminals 6 and 7 

(

I6).

The UMG 512-PRO measures residual currents 
in accordance with IEC/TR 60755 (2008-01), 

 

Type A

NOTE!

•  The transformation ratios for 

the residual current transformer 
inputs can be confi gured using the 
GridVis® software.

•  The 

"Energy Analyser 512-PRO 

with residual current monitoring 
via measurement inputs I5/I6"
 
connection variant and further 
information are provided in the
user manual.

•  It is not necessary to confi gure 

a connection schematic for 
measurement inputs I5 and I6.

The device is suitable for use as a residual 
current monitoring device (RCM) to monitor

•  AC
•  DC and
•  pulsing DC.

 10

Fuse
(UL/IEC listed)

Deutsche V

ersion:

siehe V

or

derseite

Janitza electronics GmbH
Vor dem Polstück 6
D-35633 Lahnau / Germany
Support tel. +49 6441 9642-22
Fax +49 6441 9642-30
e-mail: [email protected]
www.janitza.com

www

.janitza.com

Assembly

Power Quality Analyser

UMG 512-PRO

Installation manual

Residual current monitoring (RCM)

 Installation

 Device settings

Disclaimer

The observance of the information products 
for the devices is a prerequisite for safe opera-
tion and to achieve the stipulated performance 
characteristics and product characteristics. 
Janitza electronics GmbH accepts no liability 
for injuries to personnel, property damage 
or fi nancial losses arising due to a failure to 
comply with the information products. Ensure 
that your information products are accessible 
and legible.

Further information can be found on our web-
site www.janitza.com at Support > Downloads.

Copyright notice

© 2016 - Janitza electronics GmbH - Lahnau.
All rights reserved. Duplication, editing, 
distribution and any form of exploitation, also 
as excerpts, is prohibited.

Subject to technical amendments

•  Make sure that your device agrees with the 

installation manual.

•  Read and understand fi rst product-related 

documents.

•  Keep product supporting documentation 

throughout the life available and, where ap-
propriate, to pass on to subsequent users.

•  Please inform yourself about device revisi-

ons and the associated adjustments to the 
product-related documentation on
www.janitza.com.

 

Disposal

Please observe national regulations! 
If disposing of individual parts, please dispose 
of them in accordance with their nature and 
existing country-specifi c regulations, for 
example as:

•  Electrical scrap
•  Plastics
•  Metals

Or, task a certifi ed disposal business with the 
scrapping.

Relevant laws, applied standards and 
directives

The laws, standards and directives for the 
device applied by Janitza electronic GmbH 
can be found in the declaration of conformity 
on our website.

The UMG 512-PRO is operated via 6 function 
keys for

•  selecting measured value indications.
•  Navigation within the menus.
•  Editing device settings.

Key

Function

•  Back to home screen
•  Exits selection menu

•  Select digit (to the left)
•  Selects main values (U, I, P ...)
•  Changes (number -1)
•  By-values (select)
•  Selects menu item
•  Changes (1)
•  By-values (select)
•  Selects menu item
•  Select digit (to the right)
•  Selects main values (U, I, P ...)

•  Opens selection menu
•  Confi rm selection

Operation and button functions

Fig. UMG 512-PRO display - 
"Home" measured value indication 

NOTE! Current and voltage transformer 
ratios.
The current and voltage transformer ratios can 
be conveniently confi gured via

•  the Confi guration > Measurement > 

Measurement transformer > MAIN 
measurement transformer menu.

•  the GridVis® software.

More details on current transformers and 
voltage transformer ratios and their adjustment 
can be found in the user manual.

NOTE!
For further information on operating, 
displays and button functions on your 
device, see the user manual.

Display title

Measured 
values

Labelling of the 
function keys
Function keys

Technical data

General

Net weight

(with attached connectors)

approx. 1080 g

Device dimensions

l = 144 mm,

b = 144 mm,

h = 75 mm

Battery

Typ Li-Mn CR2450, 3 V

(approval i.a.w. UL 1642)

Clock

(in temperature range 

-40°C to 85°C)

+-5ppm (corresponding to 

approx. 3 minutes p.a.)

Transport and storage

The following information applies to devices which are trans-

ported or stored in the original packaging.
Free fall

1 m

Temperature

-25° C to +70° C

Ambient conditions during operation

The device

•  weather-protected and stationary use.

•  connected to the protective conductor connection.

•  corresponds to protection class I in acc. with IEC 60536

(VDE 0106, Part 1).

Working temperature range

-10° C .. +55° C

Relative humidity

5 to 95% at 25°C

without condensation

Operating altitude

0 to 2000 m above sea level

Pollution degree

2

Einbaulage

vertical

Lüftung

no forced ventilation required.

Protection against ingress of 

solid foreign bodies and water

- Front side

- Rear side

IP40 in acc. with EN60529

IP20 in acc. with EN60529

Supply voltage

Protection of the  
supply voltage (fuse)

6 A, Char B

(approved i.a.w. UL/IEC)

Installations of
overvoltage category

300 V CAT III

Nominal range

Option 230 V

AC 95 V - 240 V (50/60 Hz) or

DC 80 V - 300 V
Option 24 V

AC 48 V - 110 V (50/60 Hz) or

DC 24 V - 150 V

Operating range

+-10% of nominal range

Power consumption

Option 230 V: max. 14 VA / 7 W

Option 24 V: max. 13 VA / 9 W

Voltage measurement

Three-phase 4-conductor 
systems with rated voltages 
(L-N/L-L) up to

IEC: max. 417 V/720 V

UL: max. 347 V/600 V

Three-phase 3-conductor 
systems with rated voltages 
(L-L) up to

max. 600 V (+10%)

Overvoltage category

600 V CAT III

Rated surge voltage

6 kV

Protection of

voltage measurement

1 - 10 A

(With IEC / UL approval)

Measurement range L-N 

1)

0 .. 600 Vrms

Measurement range L-L 

1)

0 .. 1000 Vrms

Resolution

0.01 V

Crest factor

1.6 (related to 600 Vrms)

Impedance

4 MΩ / phase

Power consumption

ca. 0.1 VA

Sampling rate

25.6 kHz / phase

Transients

39 µs

Frequency range of

the fundamental oscillation

- resolution

15 Hz .. 440 Hz
0.001 Hz

1)  The device can only determine measured values, if at least 

a voltage L-N greater than 10Veff or a voltage L-L of greater 
than 18Veff is present at one voltage measurement input.

2)  Udin = arranged input voltage according to

DIN EN 61000-4-30

Current measurement

Rated current

5 A

Metering range

0.005 to 7 Arms

Measurement range exceeded 
(overload)

From 8.5 Arms

Crest factor

1.41

Resolution

0.1 mA

Overvoltage category

Option 230 V: 300 V CAT III

Option 24 V: 300 V CAT II

Measurement surge voltage

4 kV

Power consumption

approx. 0.2 VA (Ri=5 mΩ)

Overload for 1 sec.

120 A (sinusoidal)

Sampling rate

25.6 kHz / phase

Residual current monitoring I5 / I6 (RCM)

Rated current

30 mArms

Metering range

0 to 40 mArms

Triggering current

100 

µ

A

Resolution

µ

A

Crest factor

1.414 (related to 40mA)

Burden

4 Ohm

Overload for 1 sec.

5 A

Sustained overload

1 A

Overload for 20 ms

50 A

Maximum external burden

300 Ohm
(for cable break detection)

Digital inputs

2 digital inputs with a joint earth.
Maximum counter frequency

20 Hz

Response time (Jasic program)  200 ms

Input signal present

18 V to 28 V DC (typical 4 mA) 

(SELV or PELV supply)

Input signal not present

0 to 5 V DC,

current less than 0.5 mA

Digital outputs

2 digital outputs with a joint earth;

semiconductor relay, not short-circuit proof.

Supply voltage

20 - 30 V DC

(SELV or PELV supply)

Switching voltage

max. 60 V DC

Switching current

max. 50 mAeff AC/DC

Response time (Jasic program)

200 ms

Pulse output (energy pulse)

max. 20 Hz

Temperature measurement input

3-wire measurement.
Update time

1 second

Connectable sensors

PT100, PT1000, KTY83, KTY84

Total burden ( cable)

max. 4 kOhm

Cable length (Residual current monitoring, digital 
inputs and outputs, temperature measurement input)

Up to 30 m

Unshielded

More than 30 m

Shielded

RS485 interface
3-wire connection with 

A, B, GND

Protocol

Modbus RTU/slave,

Modbus RTU/master,

Modbus RTU/Gateway

Transmission rate

9.6 kbps, 19.2 kbps, 

38.4 kbps, 57.6 kbps, 

115.2 kbps, 921.6 kbps

Termination resistor

Can be activated by micro switch

Ethernet interface

Connection

RJ45

Function

Modbus Gateway,

Embedded Webserver (HTTP)

Protocols

CP/IP, EMAIL (SMTP),

DHCP-Client (BootP),

Modbus/TCP,

Modbus RTU over Ethernet, 

FTP, ICMP (Ping), NTP, TFTP, 

BACnet (Option), SNMP

Profi bus interface

Connection

SUB D 9-pole

Protocol

Profi bus DP/V0 as per EN 50170

Übertragungsrate

9.6 kBaud to 12 MBaud

Potential separation and electrical safety for the 
interfaces

The interfaces (RS485, Profi bus, Ethernet) have

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  a functional insulation against each other, to the measuring 

inputs RCM and temperature and to the digital I/Os.

The interfaces of the connected devices requires a double or 

reinforced insulation against the mains voltages (acc. to

IEC 61010-1: 2010).

Terminal connection capacity (supply voltage)

Connectable conductors.

Only one conductor can be connected per terminal!
Single core, multi-core,

fi ne-stranded

0.2 - 2.5 mm

2

, AWG 24 - 12

Terminal pins, core end sheath

0.25 - 2.5 mm

2

Tightening torque

0.5 - 0.6 Nm 

Stripping length

7 mm

Terminal connection capacity
(voltage and current measurement)

Connectable conductors.

Only one conductor can be connected per terminal!
Single core, multi-core,

fi ne-stranded

0.2 - 2.5 mm

2

, AWG 24-12

Terminal pins, core end sheath

0.25 - 2.5 mm

2

Tightening torque

0.5 - 0.6 Nm

Stripping length

7 mm

Terminal connection capacity
(temperature measurement input)

Connectable conductors.

Only one conductor can be connected per terminal!
Single core, multi-core,

fi ne-stranded

0.08 - 1.5 mm

2

Terminal pins, core end sheath

1 mm

2

Potential separation and electrical safety of the
temperature measurement input

The temperature measuring input has

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  no insulation for RCM measuring input. 

•  a functional insulation of the interfaces Ethernet, Profi bus, 

RS485 and digital I/Os.

An external temperature sensor requires a double insulation to 

plant parts with dangerous contact voltage (acc. to 

IEC 61010-1: 2010).

NOTE!
Further technical data can be found in
the user manual for the device.

Terminal connection capacity
(residual current monitoring (RCM))

Connectable conductors.

Only one conductor can be connected per terminal!
Rigid/fl exible

0.14 - 1.5 mm

2

, AWG 28-16

Flexible with core end sheath 

with plastic sleeve

0.2 - 1.5 mm

2

Flexible with core end sheath 

without plastic sleeve

0.2 - 1.5 mm

2

Tightening torque

0.2 - 0.25 Nm

Stripping length

7 mm

Terminal connection capacity
(digital inputs and outputs (I/Os))

Rigid/fl exible

0.14 - 1.5 mm

2

, AWG 28-16

Flexible with core end sheath 

with plastic sleeve

0.25 - 0.5 mm

2

Flexible with core end sheath 

without plastic sleeve

0.25 - 1.5 mm

2

Tightening torque

0.22 - 0.25 Nm

Stripping length

7 mm

Potential separation and electrical safety
of the RCM measurement inputs

The RCM-measurement inputs have

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  no insulation for temperature measurement input.

•  a functional insulation of the interfaces Ethernet, Profi bus, 

RS485 and digital I/Os.

The residual current transformer connected and the lines to be 

measured must each have at least one additional or a basic 

insulation per IEC61010-1:2010 for the mains voltage present.

Potential separation and electrical safety of the
digital inputs and outputs (I/Os)

The digital inputs and outputs have

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  a functional insulation against each other, to the interfaces 

Ethernet, Profi bus, RS485 and temperature measurement 

input.

The external auxiliary voltage to be connected must be

compliant with SELV or PELV.

Procedure in the event of faults

 16

Possible fault

Cause

Remedy

No display

External fuse for the power supply voltage has tripped. Replace fuse.

No current display

Measured voltage is not connected.

Connect the measured voltage.

Measurement current is not connected.

Connect measurement current.

Current displayed is too large 

or too small.

Current measurement in the wrong phase.

Check connection and correct if necessary.

Current transformer factor is incorrectly

programmed.

Read out and program the CT ratio at the current

transformer.

The current peak value at the measurement input

was exceeded by harmonic components.

Install current transformer with a larger CT ratio.

The current at the measurement input fell short of.

Install current transformer with a smaller current 

transformer ratio.

Voltage displayed is too large 

or too small.

Measurement in the wrong phase.

Check connection and correct if necessary.

Voltage transformer incorrectly programmed.

Read out and program the voltage transformer ratio 

at the voltage transformer.

Voltage displayed is

too small.

Measurement range exceeded.

Use voltage transformers.

The peak voltage value at the measurement input 

has been exceeded by the harmonics.

Please note!

Ensure the measurement inputs are not overloaded.

Phase shift ind/cap.

A current path is assigned to the wrong voltage

circuit.

Check connection and correct if necessary.

Effective power,

consumption/supply 

reversed.

At least one current transformer connection is mixed 

up/reversed.

Check connection and correct if necessary.

A current path is assigned to the wrong voltage 

circuit.

Check connection and correct if necessary.

Possible fault

Cause

Remedy

Effective power too large or 

too small.

The programmed CT ratio is incorrect.

Read out and program the current transformer trans-

formation ratio at the current transformer.

The current path is assigned to the wrong voltage 

circuit.

Check connection and correct if necessary.

The programmed voltage transformer ratio is 

incorrect.

Read out and program the voltage transformer trans-

formation ratio at the voltage transformer.

An output is not responding.

The output was incorrectly programmed.

Check programming and correct if necessary.

The output was incorrectly connected.

Check and correct connection if necessary.

Measurement range

exceeded display (overload).

Voltage and current measurement input outside

the measurement range (See section Measurement 

range exceeded).

Check and correct connection if necessary.

Use suitable voltage or current transformer.

Read voltage / current transformer ratio at the trans-

former and program.

No connection with

the device.

RS485

•  Device address is incorrect.

•  Different bus speeds (Baud rate).

•  Wrong protocol.

•  Termination missing.

•  Adjust the device address.

•  Adjust speed (baud rate).

•  Select the correct protocol.

•  Terminate bus with termination resistor.

Ethernet

•  IP Device address is incorrect.

•  Incorrect addressing mode.

•  Adjust IP device address.

•  Adjust the IP address assignment mode.

Device still does not work 

despite the above measures.

Device defective.

Send device and error description for verifi cation to 

the manufacturer.

NOTES!

•  Find out the Ethernet network settings for your 

device from your network administrator.

•  The description of additional communication 

interfaces can be found in the user manual for 
your device.

•  For more information about connection 

and communication of your device with the 
software, see the quick guide of software 
GridVis®.

Fig. "Main menu"

Fig. "Communication" window

General

1

2

Safety

Doc no. 2.054.013.1b 

05/2018

Part no. 33.03.336

Safety information
The installation manual does not represent a full 
listing of all necessary safety measures required 
for safe operation of the device.
Certain operating conditions may require further 
measures. The installation manual contains 
information that you must observe for your 
own personal safety and to avoid damage to 
property.

Symbols used:

c

This symbol is used as an 
addition to the safety instructions 
and warns of an electrical hazard.

m

This symbol is used as an 
addition to the safety instructions 
and warns of a potential hazard.

This symbol with the word 

NOTE! 

describes:

•  Procedures that do not pose 

any risks of injures.

•  Important information, 

procedures or handling steps.

Safety information is highlighted by a warning 
triangle and is indicated as follows depending 
on the degree of danger:

m

DANGER!

Indicates an imminent danger that 
causes severe or fatal injuries.

m

WARNING!

Indicates a potentially hazardous 
situation that can cause severe 
injuries or death.

m

CAUTION!

Indicates a potentially hazardous 
situation that can cause minor 
injuries or damage to property.

Safety measures
When operating electrical devices, certain parts 
of these devices are invariably subjected to 
hazardous voltage. Therefore, severe bodily 
injuries or damage to property can occur if they 
are not handled properly:

•  De-energise your device before starting 

work! Check that it is de-energised.

•  Before connecting connections, earth the 

device at the ground wire connection if 
present.

3

•  Hazardous voltages may be present in all 

switching parts that are connected to the 
power supply.

•  Hazardous voltages may also be present 

in the device even after disconnecting the 
supply voltage (capacitor storage).

•  Do not operate equipment with current 

transformer circuits while open.

•  Do not exceed the threshold values specifi ed 

in the user manual and on the rating plate. 
Also adhere to this when inspecting and 
commissioning.

•  Observe the safety and warning instructions in 

the documents that belong to the device! 

Qualifi ed staff

In order to prevent personal injuries and damage 
to property, only qualifi ed staff with electrical 
training may work on the device, with knowledge 
of

•  the national accident prevention regulations
•  the safety engineering standards
•  installing, commissioning and operating the 

device.

Proper use

The device is

•  intended to be installed in switching cabinets 

and small installation distributors (see step 3, 
"Installation").

•  not intended to be installed in vehicles! Using 

the device in non-stationary equipment is 
considered an extraordinary environmental 
condition and is only permitted with a special 
agreement.

•  not intended to be installed in environments 

with harmful oils, acids, gases, vapours, 
dusts, radiation, etc.

The prerequisites for faultless, safe operation 
of the device are proper transport and proper 
storage, set-up and installation, as well as 
operation and maintenance.

 14

 12

 11

5

Device short description

Install the device in a weather-protected front 
panel on switching cabinets.

Cut-out size:
138

+0.8

 x 138

+0.8

 mm

Ensure!
Adequate ventilation
•   The device is installed 

vertically!

•   Adherence to clearances 

from neighbouring 
components!

Fig.Mounting position,
rear view

Establish Ethernet connection to the PC

The three most common Ethernet connections 
between PC and device are described here:

PC

UMG

Ethernet 

(cross patch cable)

The PC and the UMG 512-PRO require a static IP address.

1.

The PC and the UMG 512-PRO require a static IP address.

Switch/

router

Patch cable

Patch cable

PC

UMG

2.

The DHCP server assigns IP addresses to the UMG 512-PRO and 
the PC automatically.

Patch cable

Patch cable

DHCP
server

PC

UMG

Switch/

router

3.

m

CAUTION!

Damage to property due to 
incorrect network settings

Incorrect network settings can cause faults in 
the IT network!
Obtain information from your network 
administrator about the correct Ethernet 
network settings for your device.

More information on device confi guration 
and communication is provided as of step 13.

Voltage measurement

The device has 4 voltage measurement inputs 
and is suitable for various connection variants.

m

CAUTION!

Risk of injuries or damage to 
the device

Failure to observe the connection conditions 
for the voltage measurement inputs can cause 
injuries to you or damage to the device.
Therefore, note the following:

• 

Do not connect the voltage measurement 
inputs

 

-

to DC voltage.

 

-

Do not use for voltage measurement in 
SELV circuits (safe extra low voltage).

• 

Voltages that exceed the allowed network 
rated voltages be connected via a voltage 
transformer.

• 

The voltage measurement inputs are to 
be equipped with a suitable, labelled fuse 
and isolation device located in the vicinity.

4

Network systems

Network systems and maximum rated voltages (DIN EN 61010-1/A1):

Three-phase four-conductor 

systems

with earthed neutral conductor

Three-phase four-conductor 

systems with non-earthed neutral 

conductor (IT networks)

Three-phase four-conductor 

systems, not earthed

Three-phase four-conductor 

systems with earthed phase

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

IEC U

L-N

 / U

L-L

: 417 VLN / 720 VLL

Only partially suitable for use in non-earthed 

networks (see step 7).

U

L-L

600 VLL

UL U

L-N

 / U

L-L

: 347 VLN / 600 VLL

Two-phase two-conductor 

systems, not earthed

Single-phase two-conductor 

systems with earthed neutral 

conductor

Separated single-phase three-

conductor systems with earthed 

neutral conductor

Application areas for the 
device:

•  2, 3 and 4 conductor 

networks (TN and TT 
networks).

•  In residential and 

industrial applications.

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

L1
L2

L3
E

E

N

E

L1
L2

L3
E

N

R

L1

L2
L3
E

E

L1

L2
E

E

L

N
E

E

L1

L2
L3
E

E

L1

L2

N

E

E

Only partially suitable 

for use in non-earthed 
networks (see step 7).

IEC

U

L-N 

480 VLN

IEC U

L-N

 / U

L-L

: 400 VLN / 690 VLL

UL

U

L-N 

480 VLN

UL U

L-N

 / U

L-L

: 347 VLN / 600 VLL

 Connecting the supply voltage

Fig. Connecting of 
supply voltage.

6

 15

Voltage measurement in the three-phase 
four-conductor system (TN, TT networks)
.
Note: Earth your system!

Voltage measurement in the three-phase three-
conductor system (IT network).
The device is only suitable for use in IT networks 
to a limited extent, as the measured voltage 
relative to the housing potential is measured and 
the input impedance of the device creates residual 
current against the earth. The residual current can 
trigger insulation monitoring in IT networks.
Connection variants with voltage transformers 
are suitable for IT networks without 
restrictions!

Schematic diagram for voltage measurement

Fig. Schematic diagram, device in an IT network without N.

Current measurement

The device

•  is intended for connecting current 

transformers with secondary currents 
of ../1 A and ../5 A.

•  does not measure DC.
•  has current measurement inputs that can 

be loaded with a maximum of 120 A for 
1 second. 

Fig. Connection 
example for "Current 
measurement via
current transformers".

The current direction can be corrected via 
the serial interfaces or on the device for each 
phase. If incorrectly connected, a subsequent 
re-connection of the current transformer is not 
required.

8

7

Confi guration

After the power returns, the device displays the 
fi rst measured value indication "Home".

•  Press button 1 "ESC" to access the 

"Confi guration" menu:

•  Use buttons 3 and 4 to select the menu entry 

to be adjusted in the "Confi guration" menu. 

•  Confi rm the selected menu entry by pressing 

button 6 "Enter"!

Press button 1 "ESC" to change back to the 
higher menu level.

The "Communication" menu entry takes you to 
the following window:

Your device has 1 Ethernet interface and 1 
RS485 interface (fi eld bus) for communication, 
which can be adjusted in the "Communication" 
window.

NOTE!
Detailed information on all menu entries and their settings can be found in the user manual.

 13

L1

N PE

L3

L2

Fig. "Voltage measurement" 
connection example.

NOTE!
As an alternative to the fuse and circuit 
breaker, you can use a line safety switch.

m

CAUTION!

Damage to property due to not 
observing the connection conditions or 
impermissible overvoltages

Your device can be damaged or destroyed by a failure to 
comply with the connection conditions or by exceeding the 
permissible voltage range.
Before connecting the device to the supply voltage, 
check:

• 

The ground wire connection must be connected with 
the system earthing!

• 

The voltage and frequency must meet the 
specifi cations on the rating plate! Adhere to the 
threshold values as described in the user manual!

• 

In building installations, the supply voltage must be 
protected with a UL/IEC approved circuit breaker / 
a fuse!

• 

The circuit breaker

 

-

must be easily accessible for the user and be 
installed close to the device.

 

-

must be labelled for the relevant device.

• 

Do not connect the supply voltage to the voltage 
transformers.

• 

Provide a fuse for the neutral conductor if the 
source's neutral conductor connection is not earthed.

Fig. Schematic diagram, device in a 

TN network.

PE

347V/600V 50/60Hz

L2

L3

N

L1

N

L1

240V 
50/60Hz

Earthing 
of the 
system

DC

AC/DC

Auxiliary supply

Voltage measurement

4M

4M

4M

4M

V1

V3

V2

Vref

4M

V4

UMG 512-PRO

600V 50/60Hz

DC

AC/DC

L2

L3

Auxiliary supply

Voltage measurement

4M

4M

4M

4M

V1

V3

V2

4M

V4

Earthing of
the system

Impedance

L1

UMG 512-PRO

Vref

8

Connection variants for baseline measurement inputs 1-3 (voltage and current)

Measurement in a three-phase 4-conductor network 

with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

The device requires the mains frequency 
(range from 15 Hz to 440 Hz) to measure and 
calculate measured values.

It is not necessary to confi gure connection 
schematics for measurement inputs V4 and I4.

Measurement in a three-phase 4-conductor network 

with symmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement via 3 voltage transformers in a three-phase 

4-conductor network with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement via 2 voltage transformers in a three-phase 

4-conductor network with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement via 2 current transformers in a three-phase 

3-conductor network with symmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement in a three-phase 4-conductor network 

with asymmetric loading.

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 3m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

N

L

1

L

2

L

3

N

4w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement of one phase in a three-phase 4-conductor network.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a three-phase 3-conductor network 

with asymmetric loading.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

Measurement in a single-phase 3-conductor network. 

I3 and U3 are not calculated and set to zero.

L1

N

L

1

L

2

L

3

N

2w 1m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 3m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2i

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2m

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1
L2
L3

L

1

L

2

L

3

N

3w 2u

hv

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L

1

L

2

L

3

N

2w 2m

I

1

I

2

I

3

S1 S2 S1 S2 S1 S2

L1

L2

NOTE!
Further information on

•  supporting measurements via inputs 

V4 (L4) and I4, and

•  current data and current transformer 

data

is provided in the user manual.

9

The device has 3 types of address allocation for the 
Ethernet interface (TCP/IP) in 

DHCP mode:

1. 

OFF (fi xed IP address)
The user selects the IP address, network mask 
and gateway on the device. Use this mode for 
straightforward networks without DHCP servers. 

2. 

BOOTP
Automatically integrates your device into an 
existing network. BOOTP is an older protocol and 
has a smaller scope of functions than DHCP.

3. 

DHCP
When started, the device automatically receives 
the IP address, the network mask and the gateway 
from the DHCP server.

Standard setting for the device is DHCP!

Communication via Ethernet interface (TCP/IP)

c

WARNING!

Risk of injury due to electric 
voltage!

Severe bodily injuries or death can occur due 
to:

•  touching bare or stripped wires that are 

live,

•  current measurement inputs that are 

dangerous to touch on the device and on 
the current transformers.

De-energise your device before starting 
work! Check that it is de-energised.
Earth the system. To do this, use the earth 
connection points with the earthing symbol. 
Also earth the secondary windings on the 
current transformer and all metal parts on 
the transformer that are able to be touched.

RECOMMENDATION!
For a PE/N measurement, connect the 
protective earth (PE) to measurement 
input V4. Do not use a green and yellow 
wire for this as the conductor does not 
have any protective function!

The voltage measurement inputs are designed for 
measurements in low voltage networks, in which the 
following rated voltages occur: 

•  Per IEC - 417 V phase to earth and 720 V phase 

to phase in the 4-conductor system.

•  Per UL - 347 V phase to earth and 600 V phase to 

phase in the 4-conductor system.

•  600 V phase to phase in the 3-conductor system.

The measurement and surge voltages meet 
overvoltage category 600 V CATIII.

User manual:

The device is a class A power quality analyser 
that

•  measures and calculates electrical variables 

such as voltage, current, power, energy, 
harmonics, etc. in building installations, 
on distribution units, circuit breakers and 
busbar trunking systems.

•  measures and monitors residual currents 

(RCM) and currents at the central 
grounding point (CGP). The residual current 
monitoring is carried out via an external 
residual current transformer (30 mA rated 
current) on the current measurement inputs 
I5 and I6.

•  displays measurement results and transmits 

them via interfaces (Ethernet, Modbus, 
Profi bus).

m

CAUTION!

Damage to property due to 
not observing the installation 
instructions

Failing to observe the installation instructions 
can damage or destroy your device.
Ensure that there is adequate air circulation 
in your installation environment; if the 
ambient temperatures are high, ensure there 
is adequate cooling if required.

NOTE!
Detailed information on the device 
functions and data can be found in the 
user manual.

Circuit breaker

Fuse

L1

N PE

L3

L2

Protective 
conductor

Ground wire 
connection

The supply voltage level for your device is 
specifi ed on the rating plate.
After connecting the supply voltage, the fi rst 
measured value indication "Home" appears 
on the display. If no indication appears, check 
whether the supply voltage is within the rated 
voltage range.

c

WARNING!

Risk of injury due to electric 
voltage!

Severe bodily injuries or death can occur due to

•  touching bare or stripped wires that are live.
•  device inputs that are dangerous to touch.

De-energise your device before starting 
work! Check that it is de-energised.

Circuit
breaker

L1

N PE

L3

L2

S

1

S

2

S

1

S

2

S

1

S

2

S

1

S

2

Ethernet connection

Patch cable

Recommendation:

Use at least CAT5 
cables!

L2 L3

N L1

Load

PE

Residual current monitoring (RCM) via I5 and I6

"Residual current monitoring 
via current transformer" 
connection variant

Suitable residual current transformers with 
a rated current of 30 mA are connected to 
terminals 4 and 5 (

I5) and terminals 6 and 7 

(

I6).

The UMG 512-PRO measures residual currents 
in accordance with IEC/TR 60755 (2008-01), 

 

Type A

NOTE!

•  The transformation ratios for 

the residual current transformer 
inputs can be confi gured using the 
GridVis® software.

•  The 

"Energy Analyser 512-PRO 

with residual current monitoring 
via measurement inputs I5/I6"
 
connection variant and further 
information are provided in the
user manual.

•  It is not necessary to confi gure 

a connection schematic for 
measurement inputs I5 and I6.

The device is suitable for use as a residual 
current monitoring device (RCM) to monitor

•  AC
•  DC and
•  pulsing DC.

 10

Fuse
(UL/IEC listed)

Deutsche V

ersion:

siehe V

or

derseite

Janitza electronics GmbH
Vor dem Polstück 6
D-35633 Lahnau / Germany
Support tel. +49 6441 9642-22
Fax +49 6441 9642-30
e-mail: [email protected]
www.janitza.com

www

.janitza.com

Assembly

Power Quality Analyser

UMG 512-PRO

Installation manual

Residual current monitoring (RCM)

 Installation

 Device settings

Disclaimer

The observance of the information products 
for the devices is a prerequisite for safe opera-
tion and to achieve the stipulated performance 
characteristics and product characteristics. 
Janitza electronics GmbH accepts no liability 
for injuries to personnel, property damage 
or fi nancial losses arising due to a failure to 
comply with the information products. Ensure 
that your information products are accessible 
and legible.

Further information can be found on our web-
site www.janitza.com at Support > Downloads.

Copyright notice

© 2016 - Janitza electronics GmbH - Lahnau.
All rights reserved. Duplication, editing, 
distribution and any form of exploitation, also 
as excerpts, is prohibited.

Subject to technical amendments

•  Make sure that your device agrees with the 

installation manual.

•  Read and understand fi rst product-related 

documents.

•  Keep product supporting documentation 

throughout the life available and, where ap-
propriate, to pass on to subsequent users.

•  Please inform yourself about device revisi-

ons and the associated adjustments to the 
product-related documentation on
www.janitza.com.

 

Disposal

Please observe national regulations! 
If disposing of individual parts, please dispose 
of them in accordance with their nature and 
existing country-specifi c regulations, for 
example as:

•  Electrical scrap
•  Plastics
•  Metals

Or, task a certifi ed disposal business with the 
scrapping.

Relevant laws, applied standards and 
directives

The laws, standards and directives for the 
device applied by Janitza electronic GmbH 
can be found in the declaration of conformity 
on our website.

The UMG 512-PRO is operated via 6 function 
keys for

•  selecting measured value indications.
•  Navigation within the menus.
•  Editing device settings.

Key

Function

•  Back to home screen
•  Exits selection menu

•  Select digit (to the left)
•  Selects main values (U, I, P ...)
•  Changes (number -1)
•  By-values (select)
•  Selects menu item
•  Changes (1)
•  By-values (select)
•  Selects menu item
•  Select digit (to the right)
•  Selects main values (U, I, P ...)

•  Opens selection menu
•  Confi rm selection

Operation and button functions

Fig. UMG 512-PRO display - 
"Home" measured value indication 

NOTE! Current and voltage transformer 
ratios.
The current and voltage transformer ratios can 
be conveniently confi gured via

•  the Confi guration > Measurement > 

Measurement transformer > MAIN 
measurement transformer menu.

•  the GridVis® software.

More details on current transformers and 
voltage transformer ratios and their adjustment 
can be found in the user manual.

NOTE!
For further information on operating, 
displays and button functions on your 
device, see the user manual.

Display title

Measured 
values

Labelling of the 
function keys
Function keys

Technical data

General

Net weight

(with attached connectors)

approx. 1080 g

Device dimensions

l = 144 mm,

b = 144 mm,

h = 75 mm

Battery

Typ Li-Mn CR2450, 3 V

(approval i.a.w. UL 1642)

Clock

(in temperature range 

-40°C to 85°C)

+-5ppm (corresponding to 

approx. 3 minutes p.a.)

Transport and storage

The following information applies to devices which are trans-

ported or stored in the original packaging.
Free fall

1 m

Temperature

-25° C to +70° C

Ambient conditions during operation

The device

•  weather-protected and stationary use.

•  connected to the protective conductor connection.

•  corresponds to protection class I in acc. with IEC 60536

(VDE 0106, Part 1).

Working temperature range

-10° C .. +55° C

Relative humidity

5 to 95% at 25°C

without condensation

Operating altitude

0 to 2000 m above sea level

Pollution degree

2

Einbaulage

vertical

Lüftung

no forced ventilation required.

Protection against ingress of 

solid foreign bodies and water

- Front side

- Rear side

IP40 in acc. with EN60529

IP20 in acc. with EN60529

Supply voltage

Protection of the  
supply voltage (fuse)

6 A, Char B

(approved i.a.w. UL/IEC)

Installations of
overvoltage category

300 V CAT III

Nominal range

Option 230 V

AC 95 V - 240 V (50/60 Hz) or

DC 80 V - 300 V
Option 24 V

AC 48 V - 110 V (50/60 Hz) or

DC 24 V - 150 V

Operating range

+-10% of nominal range

Power consumption

Option 230 V: max. 14 VA / 7 W

Option 24 V: max. 13 VA / 9 W

Voltage measurement

Three-phase 4-conductor 
systems with rated voltages 
(L-N/L-L) up to

IEC: max. 417 V/720 V

UL: max. 347 V/600 V

Three-phase 3-conductor 
systems with rated voltages 
(L-L) up to

max. 600 V (+10%)

Overvoltage category

600 V CAT III

Rated surge voltage

6 kV

Protection of

voltage measurement

1 - 10 A

(With IEC / UL approval)

Measurement range L-N 

1)

0 .. 600 Vrms

Measurement range L-L 

1)

0 .. 1000 Vrms

Resolution

0.01 V

Crest factor

1.6 (related to 600 Vrms)

Impedance

4 MΩ / phase

Power consumption

ca. 0.1 VA

Sampling rate

25.6 kHz / phase

Transients

39 µs

Frequency range of

the fundamental oscillation

- resolution

15 Hz .. 440 Hz
0.001 Hz

1)  The device can only determine measured values, if at least 

a voltage L-N greater than 10Veff or a voltage L-L of greater 
than 18Veff is present at one voltage measurement input.

2)  Udin = arranged input voltage according to

DIN EN 61000-4-30

Current measurement

Rated current

5 A

Metering range

0.005 to 7 Arms

Measurement range exceeded 
(overload)

From 8.5 Arms

Crest factor

1.41

Resolution

0.1 mA

Overvoltage category

Option 230 V: 300 V CAT III

Option 24 V: 300 V CAT II

Measurement surge voltage

4 kV

Power consumption

approx. 0.2 VA (Ri=5 mΩ)

Overload for 1 sec.

120 A (sinusoidal)

Sampling rate

25.6 kHz / phase

Residual current monitoring I5 / I6 (RCM)

Rated current

30 mArms

Metering range

0 to 40 mArms

Triggering current

100 

µ

A

Resolution

µ

A

Crest factor

1.414 (related to 40mA)

Burden

4 Ohm

Overload for 1 sec.

5 A

Sustained overload

1 A

Overload for 20 ms

50 A

Maximum external burden

300 Ohm
(for cable break detection)

Digital inputs

2 digital inputs with a joint earth.
Maximum counter frequency

20 Hz

Response time (Jasic program)  200 ms

Input signal present

18 V to 28 V DC (typical 4 mA) 

(SELV or PELV supply)

Input signal not present

0 to 5 V DC,

current less than 0.5 mA

Digital outputs

2 digital outputs with a joint earth;

semiconductor relay, not short-circuit proof.

Supply voltage

20 - 30 V DC

(SELV or PELV supply)

Switching voltage

max. 60 V DC

Switching current

max. 50 mAeff AC/DC

Response time (Jasic program)

200 ms

Pulse output (energy pulse)

max. 20 Hz

Temperature measurement input

3-wire measurement.
Update time

1 second

Connectable sensors

PT100, PT1000, KTY83, KTY84

Total burden ( cable)

max. 4 kOhm

Cable length (Residual current monitoring, digital 
inputs and outputs, temperature measurement input)

Up to 30 m

Unshielded

More than 30 m

Shielded

RS485 interface
3-wire connection with 

A, B, GND

Protocol

Modbus RTU/slave,

Modbus RTU/master,

Modbus RTU/Gateway

Transmission rate

9.6 kbps, 19.2 kbps, 

38.4 kbps, 57.6 kbps, 

115.2 kbps, 921.6 kbps

Termination resistor

Can be activated by micro switch

Ethernet interface

Connection

RJ45

Function

Modbus Gateway,

Embedded Webserver (HTTP)

Protocols

CP/IP, EMAIL (SMTP),

DHCP-Client (BootP),

Modbus/TCP,

Modbus RTU over Ethernet, 

FTP, ICMP (Ping), NTP, TFTP, 

BACnet (Option), SNMP

Profi bus interface

Connection

SUB D 9-pole

Protocol

Profi bus DP/V0 as per EN 50170

Übertragungsrate

9.6 kBaud to 12 MBaud

Potential separation and electrical safety for the 
interfaces

The interfaces (RS485, Profi bus, Ethernet) have

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  a functional insulation against each other, to the measuring 

inputs RCM and temperature and to the digital I/Os.

The interfaces of the connected devices requires a double or 

reinforced insulation against the mains voltages (acc. to

IEC 61010-1: 2010).

Terminal connection capacity (supply voltage)

Connectable conductors.

Only one conductor can be connected per terminal!
Single core, multi-core,

fi ne-stranded

0.2 - 2.5 mm

2

, AWG 24 - 12

Terminal pins, core end sheath

0.25 - 2.5 mm

2

Tightening torque

0.5 - 0.6 Nm 

Stripping length

7 mm

Terminal connection capacity
(voltage and current measurement)

Connectable conductors.

Only one conductor can be connected per terminal!
Single core, multi-core,

fi ne-stranded

0.2 - 2.5 mm

2

, AWG 24-12

Terminal pins, core end sheath

0.25 - 2.5 mm

2

Tightening torque

0.5 - 0.6 Nm

Stripping length

7 mm

Terminal connection capacity
(temperature measurement input)

Connectable conductors.

Only one conductor can be connected per terminal!
Single core, multi-core,

fi ne-stranded

0.08 - 1.5 mm

2

Terminal pins, core end sheath

1 mm

2

Potential separation and electrical safety of the
temperature measurement input

The temperature measuring input has

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  no insulation for RCM measuring input. 

•  a functional insulation of the interfaces Ethernet, Profi bus, 

RS485 and digital I/Os.

An external temperature sensor requires a double insulation to 

plant parts with dangerous contact voltage (acc. to 

IEC 61010-1: 2010).

NOTE!
Further technical data can be found in
the user manual for the device.

Terminal connection capacity
(residual current monitoring (RCM))

Connectable conductors.

Only one conductor can be connected per terminal!
Rigid/fl exible

0.14 - 1.5 mm

2

, AWG 28-16

Flexible with core end sheath 

with plastic sleeve

0.2 - 1.5 mm

2

Flexible with core end sheath 

without plastic sleeve

0.2 - 1.5 mm

2

Tightening torque

0.2 - 0.25 Nm

Stripping length

7 mm

Terminal connection capacity
(digital inputs and outputs (I/Os))

Rigid/fl exible

0.14 - 1.5 mm

2

, AWG 28-16

Flexible with core end sheath 

with plastic sleeve

0.25 - 0.5 mm

2

Flexible with core end sheath 

without plastic sleeve

0.25 - 1.5 mm

2

Tightening torque

0.22 - 0.25 Nm

Stripping length

7 mm

Potential separation and electrical safety
of the RCM measurement inputs

The RCM-measurement inputs have

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  no insulation for temperature measurement input.

•  a functional insulation of the interfaces Ethernet, Profi bus, 

RS485 and digital I/Os.

The residual current transformer connected and the lines to be 

measured must each have at least one additional or a basic 

insulation per IEC61010-1:2010 for the mains voltage present.

Potential separation and electrical safety of the
digital inputs and outputs (I/Os)

The digital inputs and outputs have

•  a double insulation to the inputs of the supply voltage, voltage 

and current measurement.

•  a functional insulation against each other, to the interfaces 

Ethernet, Profi bus, RS485 and temperature measurement 

input.

The external auxiliary voltage to be connected must be

compliant with SELV or PELV.

Procedure in the event of faults

 16

Possible fault

Cause

Remedy

No display

External fuse for the power supply voltage has tripped. Replace fuse.

No current display

Measured voltage is not connected.

Connect the measured voltage.

Measurement current is not connected.

Connect measurement current.

Current displayed is too large 

or too small.

Current measurement in the wrong phase.

Check connection and correct if necessary.

Current transformer factor is incorrectly

programmed.

Read out and program the CT ratio at the current

transformer.

The current peak value at the measurement input

was exceeded by harmonic components.

Install current transformer with a larger CT ratio.

The current at the measurement input fell short of.

Install current transformer with a smaller current 

transformer ratio.

Voltage displayed is too large 

or too small.

Measurement in the wrong phase.

Check connection and correct if necessary.

Voltage transformer incorrectly programmed.

Read out and program the voltage transformer ratio 

at the voltage transformer.

Voltage displayed is

too small.

Measurement range exceeded.

Use voltage transformers.

The peak voltage value at the measurement input 

has been exceeded by the harmonics.

Please note!

Ensure the measurement inputs are not overloaded.

Phase shift ind/cap.

A current path is assigned to the wrong voltage

circuit.

Check connection and correct if necessary.

Effective power,

consumption/supply 

reversed.

At least one current transformer connection is mixed 

up/reversed.

Check connection and correct if necessary.

A current path is assigned to the wrong voltage 

circuit.

Check connection and correct if necessary.

Possible fault

Cause

Remedy

Effective power too large or 

too small.

The programmed CT ratio is incorrect.

Read out and program the current transformer trans-

formation ratio at the current transformer.

The current path is assigned to the wrong voltage 

circuit.

Check connection and correct if necessary.

The programmed voltage transformer ratio is 

incorrect.

Read out and program the voltage transformer trans-

formation ratio at the voltage transformer.

An output is not responding.

The output was incorrectly programmed.

Check programming and correct if necessary.

The output was incorrectly connected.

Check and correct connection if necessary.

Measurement range

exceeded display (overload).

Voltage and current measurement input outside

the measurement range (See section Measurement 

range exceeded).

Check and correct connection if necessary.

Use suitable voltage or current transformer.

Read voltage / current transformer ratio at the trans-

former and program.

No connection with

the device.

RS485

•  Device address is incorrect.

•  Different bus speeds (Baud rate).

•  Wrong protocol.

•  Termination missing.

•  Adjust the device address.

•  Adjust speed (baud rate).

•  Select the correct protocol.

•  Terminate bus with termination resistor.

Ethernet

•  IP Device address is incorrect.

•  Incorrect addressing mode.

•  Adjust IP device address.

•  Adjust the IP address assignment mode.

Device still does not work 

despite the above measures.

Device defective.

Send device and error description for verifi cation to 

the manufacturer.

NOTES!

•  Find out the Ethernet network settings for your 

device from your network administrator.

•  The description of additional communication 

interfaces can be found in the user manual for 
your device.

•  For more information about connection 

and communication of your device with the 
software, see the quick guide of software 
GridVis®.

Fig. "Main menu"

Fig. "Communication" window

Summary of Contents for UMG 512 PRO

Page 1: ...allation Geräte Einstellungen Allgemeines Haftungsausschluss Die Beachtung der Informationsprodukte zu den Geräten ist Voraussetzung für den sicheren Betrieb und um angegebene Leis tungsmerkmale und Produkteigenschaften zu erreichen Für Personen Sach oder Ver mögensschäden die durch Nichtachtung der Informationsprodukte entstehen übernimmt die Janitza electronics GmbH keine Haftung Sorgen Sie dafü...

Page 2: ...s 2 3 und 4 Leiter Netzen TN und TT Netze Wohn und Industrie bereiche L1 L2 L3 E E N E L1 L2 L3 E N R L1 L2 L3 E E L1 L2 E E L N E E L1 L2 L3 E E L1 L2 N E E L1 L2 L3 E E N E L1 L2 L3 E N R L1 L2 L3 E E L1 L2 E E L N E E L1 L2 L3 E E L1 L2 N E E L1 L2 L3 E E N E L1 L2 L3 E N R L1 L2 L3 E E L1 L2 E E L N E E L1 L2 L3 E E L1 L2 N E E In nicht geerdeten Netzen nur bedingt geeignet vgl Schritt 7 IEC U...

Page 3: ...hritt 13 Ethernet Anschluss Patchkabel Empfehlung Verwenden Sie mindes tens CAT5 Kabel 3 n e 12 11 Geräte Kurzbeschreibung Bauen Sie das Gerät in die wettergeschützte Fronttafel von Schaltschränken ein Ausbruchmaß 138 0 8 x 138 0 8 mm Beachten Sie Für ausreichende Belüftung das Gerät senkrecht einbauen Abstände zu benachbar ten Bauteilen einhalten Abb Einbaulage Rückansicht Montage 4 Versorgungssp...

Page 4: ...le äußere Bürde 300 Ohm für Kabelbrucherkennung Sicherheitshinweise Die Installationsanleitung stellt kein vollständi ges Verzeichnis aller für einen Betrieb des Ge räts erforderlichen Sicherheitsmaßnahmen dar Besondere Betriebsbedingungen können weitere Maßnahmen erfordern Die Installations anleitung enthält Hinweise die Sie zu Ihrer persönlichen Sicherheit und zur Vermeidung von Sachschäden beac...

Page 5: ...mit der Software finden Sie im Software GridVis Schnelleinstieg Abb Menü Konfiguration Abb Fenster Kommunikation 14 Netzsysteme und Maximale Nennspannungen DIN EN 61010 1 A1 Dreiphasen Vierleitersysteme mit geerdetem Neutralleiter Dreiphasen Vierleitersysteme mit nicht geerdetem Neutralleiter IT Netze Dreiphasen Dreileitersysteme nicht geerdet Dreiphasen Dreileitersysteme mit geerdeter Phase L1 L2...

Page 6: ... I Os Ein externer Temperatursensor benötigt eine doppelte Isolierung zu Anlagenteilen mit gefährlicher Berührungsspannung gemäß IEC61010 1 2010 11 15 Für die Messung und Berechnung von Messwer ten benötigt das Gerät die Netzfrequenz Bereich von 15 Hz bis 440 Hz Für die Messeingänge V4 und I4 müssen keine Anschlussschemas konfiguriert werden L3 N I1 I2 I3 S1 S2 S1 S2 S1 S2 L3 N I1 I2 I3 S1 S2 S1 S...

Page 7: ...Taste 6 Enter bestätigen Um zurück auf die höhere Menüebene zu wech seln betätigen Sie die Taste 1 ESC Über den Menüeintrag Kommunikation gelangen Sie in folgendes Fenster Ihr Gerät verfügt zur Kommunikation über 1 Ethernet Schnittstelle und 1 RS485 Schnitt stelle Feldbus die im Fenster Kommunikation eingestellt werden HINWEIS Ausführliche Informationen zu allen Menüeinträgen und deren Einstellung...

Page 8: ...mbH Vor dem Polstück 6 D 35633 Lahnau Germany Support tel 49 6441 9642 22 Fax 49 6441 9642 30 e mail info janitza com www janitza com www janitza com Power Quality Analyser UMG 512 PRO Installation manual Residual current monitoring RCM Installation Device settings Disclaimer The observance of the information products for the devices is a prerequisite for safe opera tion and to achieve the stipula...

Page 9: ...ms with earthed neutral conductor Separated single phase three conductor systems with earthed neutral conductor Application areas for the device 2 3 and 4 conductor networks TN and TT networks In residential and industrial applications L1 L2 L3 E E N E L1 L2 L3 E N R L1 L2 L3 E E L1 L2 E E L N E E L1 L2 L3 E E L1 L2 N E E L1 L2 L3 E E N E L1 L2 L3 E N R L1 L2 L3 E E L1 L2 E E L N E E L1 L2 L3 E E ...

Page 10: ... Display title Measured values Labelling of the function keys Function keys 3 s 3 g al 12 11 Device short description Install the device in a weather protected front panel on switching cabinets Cut out size 138 0 8 x 138 0 8 mm Ensure Adequate ventilation The device is installed vertically Adherence to clearances from neighbouring components Fig Mounting position rear view Establish Ethernet conne...

Page 11: ...rden 300 Ohm for cable break detection Safety information The installation manual does not represent a full listing of all necessary safety measures required for safe operation of the device Certain operating conditions may require further measures The installation manual contains information that you must observe for your own personal safety and to avoid damage to property Symbols used c This sym...

Page 12: ...ation of your device with the software see the quick guide of software GridVis Fig Main menu Fig Communication window 14 Network systems and maximum rated voltages DIN EN 61010 1 A1 Three phase four conductor systems with earthed neutral conductor Three phase four conductor systems with non earthed neutral conductor IT networks Three phase four conductor systems not earthed Three phase four conduc...

Page 13: ...hrungsspannung gemäß IEC61010 1 2010 11 15 The device requires the mains frequency range from 15 Hz to 440 Hz to measure and calculate measured values It is not necessary to configure connection schematics for measurement inputs V4 and I4 L3 N I1 I2 I3 S1 S2 S1 S2 S1 S2 L3 N I1 I2 I3 S1 S2 S1 S2 S1 S2 L3 N I1 I2 I3 S1 S2 S1 S2 S1 S2 L3 N I1 I2 I3 S1 S2 S1 S2 S1 S2 L1 L2 L3 L1 L2 L3 N 3w 2m hv I1 I...

Page 14: ...ation menu Use buttons 3 and 4 to select the menu entry to be adjusted in the Configuration menu Confirm the selected menu entry by pressing button 6 Enter Press button 1 ESC to change back to the higher menu level The Communication menu entry takes you to the following window Your device has 1 Ethernet interface and 1 RS485 interface field bus for communication which can be adjusted in the Commun...

Reviews: