background image

Application Note 1655

2

AN1655.0

August 18, 2011

remote sensing, RM+2, RM-2 need to be changed to higher 
values, such as 10

Ω

To assess stability, RM+2 can be changed to a 100

 resistor, 

then inject the signal across VSEN+ and VSEN_PRIME.
JP201 is a SIP connector that can be used with R223 = 0

Ω

 

installed to inject a clock signal to synchronize the module to. 
The default phase shift of the CLKOUT signal from the module 
causes a second module to switch with a phase shift of 180°. 
This can be demonstrated on the 2-phase evaluation board, 
ISL8200MEVAL2PHZ.
R203 and C210 are small added filters for the VIN pins. 
The Overcurrent Protection (OCP) limit can be controlled by 
shorting the jumper marked FIXED and populating a resistor in 
R209A’s location, as per your desired OCP trip point. As another 
option, by shorting the jumper marked ADJ1, you can tune the 
OCP level using the potentiometer labeled R241. To measure the 
resistance of R241, simply turn off the part and remove the short 
across ADJ1 and place a resistance meter across it’s terminals.
If the application is in the 3.3V range, tie VIN and PVCC to 5.0V. 
However, in applications that involve a PVIN greater than 5.5V, 
open the jumper named PVIN, not doing so will increase the 
probability of tying VCC to a voltage greater than its capability. 
Shorting the jumper marked VCC will allow you to use a separate 
power supply for VCC; however this is not a necessity as VCC can 
be internally generated within the module.

Evaluating Other Output 

Voltages

The ISL8200MEVAL1PHZ kit has several preset outputs for 
convenience. 1.2V, 1.5V, 1.8V, 2.5V, 3.3V and 5.0V can be easily 
selected by shorting their appropriate jumper. There is also a 
potentiometer provided that will allow for any other output 
voltage between 0.6V to 6V. Equation 1 governs the relationship 
between the VSET resistors (R221A thru R221F) and the output 
voltage.

The output capacitors (C9 and C19) must be changed to support 
the corresponding output voltage. The onboard output capacitors 
are rated at 2V max.

Programming the Input Voltage 

UVLO and its Hysteresis

By modifying the voltage divider at the EN pin connected to the 
input rail (R1 and R2), the input UVLO and its hysteresis can be 
programmed. The ISL8200MEVAL1PHZ evaluation board comes 
stocked with R1 = 8.25k

 and R2 = 3.01k

; this sets the UVLO 

level at 2.9V for a 3.3V application.
For a 5V application, with a UVLO at 4V and recover at 4.5V, use 
R1 = 16.6k

 and R2 = 4.2k

. The UVLO equations are re-stated 

in the following, where R1 and R2 are the upper and lower 
resistors of the voltage divider at the EN pin respectively, V

HYS

 is 

the desired UVLO hysteresis and V

FTH

 is the desired UVLO falling 

threshold; a user selected value. Equation 2 describes V

HYS 

as 

the point past the programmed UVLO level at which the device 
turns on again.

For example, in a 5V application where it is desired to have the 
part turn off at 4V and recover at 4.5V, the V

HYS 

that goes in 

Equation 3 is 0.5V.

For 12V applications, if it is desired to have the IC disabled when 
the input voltage drops below 9V and restart when V

IN

 recovers 

above 10.6V, then R1 = 53.33k

 and R2 = 5.2k

Efficiency Measurement

The voltage and current meter can be used to measure 
input/output voltage and current. In order to obtain an accurate 
measurement and prevent the voltage drop of PCB or wire trace, 
the voltage meter must be close to the input/output terminals. 
For simplicity, the measuring point for the input voltage meter is 
at the PVIN_TP terminal, and the measuring point for the output 
voltage meter is at the TP310 terminal.
The efficiency equation is shown in Equation 5:

Output Ripple/Noise 

Measurement

Simple steps should be taken to ensure that there is minimum 
pickup noise due to high frequency events, which can be 
magnified by the large ground loop formed by the oscilloscope-
probe ground. This means that even a few inches of ground wire 
on the oscilloscope probe may result in hundreds of millivolts of 
noise spikes when improperly routed or terminated. This effect 
can be overcome by using the short loop measurement method 
to minimize the measurement loop area for reducing the pickup 
noise. The short loop measurement method is shown in Figure 2.

R221X

V

OUT

V

REF

(

)

V

REF

(

)

-------------------------------------

ROS

=

where V

REF

 = 0.6V

ROS = 2.2k

 internal

(EQ. 1)

UVLO

TURN ON

V

HYS

V

FTH

+

=

(EQ. 2)

R1

V

HYS

I

HYS

-------------

=

I

HYS

 = N x 30µA

N = number of phases

(EQ. 3)

R2

R

1

V

ENREF

V

FTH

V

ENREF

---------------------------------------

=

V

ENREF

 = 0.8V

(EQ. 4)

Efficiency

Output Power

Input Power

-----------------------------------

P

OUT

P

IN

-------------

V

OUT

I

OUT

(

)

V

IN

I

IN

(

)

-----------------------------------

=

=

=

(EQ. 5)

FIGURE 2. OUTPUT RIPPLE/NOISE MEASUREMENT

 

OUTPUT CAP 

OR MOSFET

 

OUTPUT CAP 

OR MOSFET

 

OUTPUT CAP 

Summary of Contents for ISL8200MEVAL1PHZ

Page 1: ...T 3 Open the jumpers marked PVIN and VCC 4 Short the jumpers marked 1 2V and FIXED This sets the output voltage to 1 2V and sets the OCP trip point its open condition 5 Push the toggle on SW1 to the left with respect to the board above 6 Set the input supply to 12V 7 Set the electronic load to a desired load current 8 Enable the power supply first and then the load the LED for PGOOD will be red wh...

Page 2: ...VLO and its hysteresis can be programmed The ISL8200MEVAL1PHZ evaluation board comes stocked with R1 8 25kΩ and R2 3 01kΩ this sets the UVLO level at 2 9V for a 3 3V application For a 5V application with a UVLO at 4V and recover at 4 5V use R1 16 6kΩ and R2 4 2kΩ The UVLO equations are re stated in the following where R1 and R2 are the upper and lower resistors of the voltage divider at the EN pin...

Page 3: ...V 2 1 8V R221C C234 3 6 8 1 2 VSEN C001 3 R219 13 R221D 1 R221E R221F 1 3 3V 2 5V 5 0V 2 2 C24 7 C51 8 7 C25 7 C12 2 1 2 1 1 3 ADJ 2 C204 R221_ADJ RM 2 9287 3 RM 2 7 8 C252 C253 8 VSEN 8 8 C255 C254 VSEN _PRIME J4 LED301 1 3 22 VOUT 1 TP301 1 2 2 4 3 Q302 1 1 R325 9 3 R324 TP310 66 B C3 8 13 12 6 7 59 1B 86 2 1 R1 R4 R3 13 SW1 3 13 1 C15 8 2 R2 R223 6 U1 6 0 5 R217 R215 R240 1 JP201 C236 2 1 VCC P...

Page 4: ... TDK Capacitor 10µF 20 25V 1210 C24 C51 C205 C207 4 DNP Capacitor 1210 C3 C15 35MV270AX 2 Sanyo Capacitor 270µF 20 35V Radial C9 C19 2TPLF330M7 2 Sanyo Capacitor 330µF 20 2V SMD HEADER1 TSW 102 07 L S 1 Generic 2 Pin Header J1 111 0702 001 1 JOHNSON COMP Binding Post Red J2 111 0703 001 1 JOHNSON COMP Binding Post Black J4 VOUT KPA8CTP 2 Burndy Wire Connector Lug LED301 SSL LXA3025IGC 1 Lumex 3 5m...

Page 5: ...eter 100kΩ 20 0 125W SMD R3 R4 H2505 DNP DNP 1 2 DNP Resistor 0603 R324 R325 H2505 03301 1 16WR1 2 Generic Resistor 3 3kΩ 0 1 1 16W 0603 SW1 GT11MSCBE T 1 C K Switch SPDT Toggle TP301 VSEN VSEN VSEN_PRIME 5002 4 Keystone Miniature White Test points 0 100 pad with 0 040 t hole TP34 TP310 PVIN_TP VCC_GND VDD_PWR 1514 2 5 Keystone Test point Turret 0 150 pads with 0 100 t hole U1 ISL8200MIRZ 1 Inters...

Page 6: ...Application Note 1655 6 AN1655 0 August 18 2011 ISL8200MEVAL1PHZ Board Layout FIGURE 3 TOP COMPONENTS FIGURE 4 TOP LAYER ...

Page 7: ...Application Note 1655 7 AN1655 0 August 18 2011 FIGURE 5 2nd LAYER FIGURE 6 3rd LAYER ISL8200MEVAL1PHZ Board Layout Continued ...

Page 8: ... without notice Accordingly the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding For information regarding Intersil Corporation and its products see www intersil com AN1655 0 August 18 2011 FIGURE 7 BOTTOM LAYER FIGURE 8 BOTTOM COMPONENTS MIRRORED ISL8200MEVAL1PHZ Board Layout Continued ...

Page 9: ...Mouser Electronics Authorized Distributor Click to View Pricing Inventory Delivery Lifecycle Information Intersil ISL8200MEVAL1PHZ ...

Reviews: