Horizon Fitness Bio-Energy Kit User Manual Download Page 4

                                           

C

6

H

12

O

6

 → 2CH

3

CH

2

OH + 2CO

2

The Promise of Cellulosic Ethanol

The “skeleton” of all plants—generally speaking, the “xylem” — is composed of cellulose, which 

cannot  be  easily  decomposed.  Most  of  the  solar  energy  “captured”  by  plants  is  stored  in  the 

cellulose. In this process, some special enzymes are used to decompose the cellulose into simple 

sugars called saccharides, and then the saccharides can be transformed into energy for human to 

use. Cellulose is abundant in nature, the alcohol produced from it is clean, and both the energy 

consumed and the greenhouse gas emitted during this producing process are minute. If we can 

transform cellulose, which is naturally abundant but not edible, into alcohol, then it would become 

feasible to produce a renewable, clean biofuel for industrial and consumer use.

The  common  raw  materials  used  to  produce  alcohol  from  cellulose  are  stalk,  bark,  and  fibrous 

tissues from plants whose cellulose cannot be eaten by humans. The production of ethanol from 

food sources such as maize is not an efficient method of ethanol production and could potentially 

decrease amount of land available for food production and influence the cost of grain products. 

More efficient methods have been developed for ethanol production using plants that can grow in 

marginal areas, not only producing greater amounts of ethanol per area of land, but also allowing 

                                           

C

6

H

12

O

6

 → 2CH

3

CH

2

OH + 2CO

2

The Promise of Cellulosic Ethanol

The “skeleton” of all plants—generally speaking, the “xylem” — is composed of cellulose, which 

cannot  be  easily  decomposed.  Most  of  the  solar  energy  “captured”  by  plants  is  stored  in  the 

cellulose. In this process, some special enzymes are used to decompose the cellulose into simple 

sugars called saccharides, and then the saccharides can be transformed into energy for human to 

use. Cellulose is abundant in nature, the alcohol produced from it is clean, and both the energy 

consumed and the greenhouse gas emitted during this producing process are minute. If we can 

transform cellulose, which is naturally abundant but not edible, into alcohol, then it would become 

feasible to produce a renewable, clean biofuel for industrial and consumer use.

The  common  raw  materials  used  to  produce  alcohol  from  cellulose  are  stalk,  bark,  and  fibrous 

tissues from plants whose cellulose cannot be eaten by humans. The production of ethanol from 

food sources such as maize is not an efficient method of ethanol production and could potentially 

decrease amount of land available for food production and influence the cost of grain products. 

More efficient methods have been developed for ethanol production using plants that can grow in 

marginal areas, not only producing greater amounts of ethanol per area of land, but also allowing 

3

arable land most suited for food crops to be reserved for food production. Most research currently 

revolves around the use of grass species such as switch grass, elephant grass, buffalo grass, that 

grow very quickly, contain high amounts of cellulose, can be grown in marginal areas that will not 

negatively affect food production. As a matter of fact, research indicates that in the fermentation of 

switch grass to produce ethanol, the yield of energy in ratio to the amount of energy exhausted to 

produce the fuel is as high as 540%, while for corn the same ratio is as low as 24%.

Could ethanol replace batteries in consumer devices?

Demand  for  storable  power  is  accelerating  as  more  and  more  features  being  added  to  our 

portable electronic devices. It is expected that next generation energy storage devices such as 

fuel cells could provide longer lasting power than batteries. Fuel cells convert fuel to electricity, 

and  so  far  most  international  research  into  fuel  cells  that  would  use  liquid  fuels  for  consumer 

electronics has been focused on methanol. Such fuel cells are called Direct Methanol Fuel Cells, 

or DMFC. In the last 10 years, DMFCs have received a lot of attention by many companies and 

research  organizations  globally,  who  are  investigating  the  possibilities  of  creating  a  number  of 

applications  with  DMFC  technology,  most  of  which  are  as  a  new  power  source  for  consumer 

electronics.

4

Summary of Contents for Bio-Energy Kit

Page 1: ...Recommended for ages 12 Bio Energy Kit User Manual...

Page 2: ...he risk of property damage serious injury or death Model No This kit should only be used by persons 12 years old and up and only under the supervision of adults who have familiarized themselves with t...

Page 3: ...e electricity using tiny quantities of biofuel mixed with water and without combustion using a new energy conversion device called a direct ethanol fuel cell DEFC In the immediate term this new ethano...

Page 4: ...inute If we can transform cellulose which is naturally abundant but not edible into alcohol then it would become feasible to produce a renewable clean biofuel for industrial and consumer use The commo...

Page 5: ...of a newly developed Direct Ethanol Fuel Cell or DEFC which unlike DMFC does not use any corrosive fuel Unlike other applications where biofuels are burned for energy DEFCs do not burn ethanol but cr...

Page 6: ...slightly larger electric applications in the future 7 2 How the fuel cell works The Direct Ethanol Fuel Cell produces electricity while ethanol reacts at the anode side of the fuel cell Hydrogen prot...

Page 7: ...h care 5 Do not attempt to use any part item or component provided in this kit for any other purpose than what is instructed in this manual Do not attempt to disassemble any part item or component in...

Page 8: ...arts A B C D E F G H I J K Not Included Ethanol solution Note Parts except H K have already been assembled Please see experiment 1 for how to assemble the fan blade or how to create the solution Ethan...

Page 9: ...les are even smaller than ethanol making the effects of cross over more difficult to overcome Preparing a 10 ethanol solution Step 1 Fill the mixing container part I with 6ml of pure ethanol fill cont...

Page 10: ...ted on the fuel cell If the system is connected properly the blade should begin to turn after about one minute If the fan does not start by itself give it a light push with your finger Since the react...

Page 11: ...current flow reverses and makes the fan spin in the opposite direction 17 18 Note Once the fan begins to run slower or stops running complete the following three steps in order to make the fan run ag...

Page 12: ...l Cell creates electricity by chemically converting the ethanol solution into an acid solution which is close to common vinegar In order for the fuel cell to func tion continuously spent fuel must be...

Page 13: ...ay in the fuel cell otherwise it will damage the fuel cell Experiment 5 Create electricity using different types of alcohol Try using different types of alcohol such as wines made from grapes or rice...

Page 14: ...well connected to the nozzle of the fuel cell on the same side At higher temperatures atoms tend to move faster and are more likely to interact with the catalysts located on the surface of the membran...

Reviews: