Heat Controller HEH Series Engineering Design Manual Download Page 5

Heat Controller                                                              

HEV-HEH SEriES

                                                           Design Guide

5

5

Heat Controller, LLC 

HEV/H SERIES

 

Engineering Design Guide

Step 1  Determine the actual heating and cooling loads at the 

desired dry bulb and wet bulb conditions.

Step 2  Obtain the following de sign parameters: Entering water 

temperature, water 

 ow rate in GPM, air 

 ow in CFM, 

water 

 ow pressure drop and design wet and dry bulb 

temperatures. Air 

 ow CFM should be between 300 and 

450 CFM per ton. Unit water pressure drop should be 

kept as close as possible to each other to make water 

balancing easier. Go to the ap pro pri ate tables and 

 nd 

the proper indicated water 

  ow  and  water  tem per a ture. 

 

Step 3  Select a unit based on total and sensible cooling condi-

tions. Select a unit which is closest to, but no larger 

than, the actual cooling load.

Step 4  Enter tables at the design water 

 ow and water tem-

perature. Read the total and sensible cooling capacities 

(Note:  interpolation  is  per mis si ble,  ex trap o la tion  is  not). 

Step 5  Read the heating capacity. If it exceeds the design 

criteria it is acceptable. It is quite normal for Water-

Source Heat Pumps to be selected on cooling capacity 

only since the heating output is usually greater than the 

cooling capacity.

Step 6  Determine the correction factors associated with the 

variable factors of dry bulb and wet bulb.

 

Corrected Total Cooling = 

 

tabulated total cooling x wet bulb correction.

 

Corrected Sensible Cooling = 

 

tabulated sensible cooling x wet/dry bulb correction.

Step 7  Compare the corrected capacities to the load re quire-

 ments. Normally if the capacities are within 10% of the 

loads, the equipment is ac cept able. It is better to under-

size than oversize, as undersizing improves humidity 

control, reduces sound levels and extends the life of the 

equip ment.

Step 8  When completed, calculate water temperature rise 

and assess the selection. If the units selected are not 

within 10% of the load cal cu la tions, then review what 

effect chang ing the GPM, water temperature and/or air 

 ow and air tem per a ture would have on the corrected 

capacities. If the desired capacity cannot be achieved, 

select the next larger or smaller unit and repeat the pro-

cedure. Remember, when in doubt, undersize slightly 

for best performance. 

Example Equipment Selection For Cool ing

Step 1 Load Determination:

Assume we have determined that the appropriate cooling load 

at the desired dry bulb 80°F and wet bulb 65°F con di-

 tions is as follows:

Total Cooling  .............................................. 22,100 BTUH

Sensible Cooling......................................... 16,500 BTUH

Entering Air Temp .......................................  80°F Dry Bulb / 

65°F Wet Bulb

Step 2 Design Conditions:

Similarly, we have also obtained the following design pa ram e ters:

Entering  Water  Temp .......................................... 90°F

Water Flow (Based upon 10°F rise in temp.)  ..... 6.0 GPM

Air Flow  .............................................................. 730 CFM

Step 3, 4 & 5 HEV/H Selection:

After making our preliminary selection (HEH026 - Full Load), we 

enter the tables at design water 

 ow and water tem per-

 a ture and read Total Cooling, Sens. Cooling and Heat of 

Rej.  ca pac i ties:

Total Cooling ....................................................24,200 BTUH

Sensible Cooling..............................................16,300 BTUH

Heat of Rejection .............................................29,900 BTUH

Step 6 & 7 Entering Air and Air

 ow Corrections:

Next, we determine our correction factors.

 

   

            Table      Ent Air   Air Flow   Cor rect ed

Corrected Total Cooling =  24,200  x  0.975  x  0.978  =  23,076

Corrected Sens Cooling =  16,300  x  1.096  x  0.926  =  16,543

Corrected Heat of Reject =  29,900  x  0.979  x  0.978  = 28,628

Step 8 Water Temperature Rise Calculation & As sess ment:

Actual Temperature Rise  ................................. 9.5°F

 

    

When we compare the Corrected Total Cooling and Corrected 

Sensible Cooling 

 gures with our load re quire ments 

stated in Step 1, we discover that our selection is within 

+/- 10% of our sensible load requirement. Fur ther more, 

we see that our Cor rect ed Total Cooling 

 gure is within 

1,000 Btuh the actual in di cat ed load.

Selection Procedure

Summary of Contents for HEH Series

Page 1: ...Heat Controller 1900 Wellworth Ave Jackson MI 49203 517 787 2100 www heatcontroller com ENGINEERING DESIGN GUIDE Residential Packaged Geothermal Heat Pump HEV HEH Series 2 to 5 Tons...

Page 2: ...12 Performance Data HEV H036 13 14 Performance Data HEV H042 15 16 Performance Data HEV H048 17 18 Performance Data HEV H060 19 20 Full Load Correction Factors 21 Part Load Correction Factors 22 Anti...

Page 3: ...solation compressor mount ing system makes the HEV H Series the quietest unit on the market Compressors are mounted via vibration isolators to a heavy gauge mounting plate which is further isolated fr...

Page 4: ...nput kilowatts LAT leaving air temperature F LC latent cooling capacity BTUH LWT leaving water temperature F MBTUH 1000 BTU per hour S T sensible to total cooling ratio SC sensible cooling capacity BT...

Page 5: ...ipment Step 8 When completed calculate water temperature rise and assess the selection If the units selected are not within 10 of the load calculations then review what effect changing the GPM water t...

Page 6: ...Design Guide HEV HEH Series Heat Controller 6 6 Engineering Design Guide HEV H SERIES Heat Controller LLC Unit Nomenclature...

Page 7: ...8 300 13 6 35 600 4 5 32 100 20 5 29 800 4 1 29 700 15 5 23 600 3 5 036 Part 25 600 17 0 29 700 5 2 28 800 29 2 24 700 4 5 27 100 23 2 21 300 3 9 Full 34 100 14 9 41 800 4 5 38 000 22 1 34 900 4 2 35...

Page 8: ...E of 22 500 Btuh To calculate LWT rearrange the formula for HE as follows HE TD x GPM x 500 where HE Heat of Extraction Btuh TD temperature difference EWT LWT and GPM U S Gallons per Minute TD HE GPM...

Page 9: ...4 0 7 1 5 20 4 14 1 1 0 23 7 20 7 1 8 22 4 1 3 18 1 102 4 5 2 2 6 4 5 1 2 2 9 20 7 14 3 0 9 23 9 22 1 1 6 22 9 1 3 18 5 103 2 5 3 2 7 80 2 3 0 2 0 4 18 5 13 3 1 3 22 8 14 6 3 2 23 2 1 3 18 8 103 7 5...

Page 10: ...5 4 5 1 2 2 9 26 7 18 0 1 5 31 8 17 8 2 6 30 5 1 9 24 1 105 5 4 8 3 7 6 0 2 2 5 2 27 1 18 2 1 4 32 0 18 8 2 4 31 1 1 9 24 6 106 3 4 8 3 8 80 3 0 0 5 1 1 24 5 17 1 1 8 30 7 13 4 4 0 31 5 1 9 25 0 106...

Page 11: ...100 7 4 7 2 9 4 5 1 4 3 2 24 2 16 4 1 3 28 6 18 7 2 0 27 7 1 7 22 0 102 2 4 8 3 0 6 0 2 2 5 0 24 5 16 6 1 2 28 8 19 8 1 8 28 4 1 7 22 6 102 9 4 9 3 0 80 3 0 0 8 1 8 22 1 15 5 1 6 27 5 13 9 3 3 29 0 1...

Page 12: ...8 0 103 0 4 5 4 1 5 6 1 9 4 5 31 7 20 3 1 9 38 1 16 7 3 1 37 7 2 4 29 4 104 6 4 6 4 4 7 5 3 1 7 2 32 2 20 5 1 8 38 4 17 6 2 9 38 6 2 4 30 2 105 5 4 6 4 5 80 3 8 1 1 2 5 29 0 19 2 2 2 36 7 13 0 4 6 39...

Page 13: ...4 4 5 0 2 0 4 28 3 21 2 1 4 33 0 20 4 2 5 31 9 1 8 25 8 99 1 5 2 3 6 6 0 0 7 1 7 28 7 21 4 1 3 33 2 21 9 2 2 32 6 1 8 26 5 99 7 5 3 3 7 80 3 0 0 1 0 2 26 0 20 0 1 8 32 0 14 7 3 9 32 9 1 8 26 7 100 0 5...

Page 14: ...6 8 1 1 2 6 38 3 26 7 2 1 45 4 18 3 3 5 45 1 2 8 35 4 104 2 4 7 5 4 9 0 2 4 5 6 38 8 26 9 2 0 45 7 19 2 3 1 46 0 2 9 36 2 105 0 4 7 5 5 80 4 5 0 2 0 4 35 5 25 5 2 5 44 1 14 2 5 4 46 6 2 9 36 7 105 5...

Page 15: ...2 98 1 4 7 3 5 5 6 1 7 4 0 34 4 26 8 1 8 40 4 19 3 2 4 37 6 2 3 29 9 99 6 4 9 3 6 7 5 2 8 6 5 35 0 27 2 1 7 40 7 20 7 2 2 38 6 2 3 30 8 100 4 5 0 3 7 80 3 8 0 9 2 1 31 1 25 3 2 2 38 7 14 0 4 0 39 1 2...

Page 16: ...103 6 4 4 5 0 7 9 3 1 7 1 45 5 33 8 2 6 54 4 17 3 3 2 52 4 3 4 40 8 105 2 4 5 5 3 10 5 4 9 11 3 46 1 34 1 2 5 54 8 18 2 3 0 53 5 3 4 41 9 106 0 4 6 5 5 80 5 3 1 5 3 5 42 0 32 2 3 1 52 6 13 5 4 7 54 4...

Page 17: ...8 1 8 4 2 37 7 26 9 2 1 44 8 18 2 3 2 41 4 2 3 33 7 98 6 5 3 3 9 9 0 3 0 6 9 38 3 27 2 2 0 45 1 19 4 2 9 42 4 2 3 34 6 99 3 5 4 4 0 80 4 5 0 9 2 0 34 4 25 4 2 6 43 3 13 1 5 1 43 2 2 3 35 4 99 9 5 5 4...

Page 18: ...54 6 3 3 43 2 101 6 4 8 5 0 9 0 3 0 6 9 50 6 34 7 3 0 60 7 17 1 4 3 57 2 3 4 45 6 103 2 5 0 5 3 12 0 4 9 11 3 51 3 34 9 2 9 61 0 18 0 4 0 58 6 3 4 46 9 104 1 5 0 5 4 80 6 0 1 4 3 3 46 5 33 0 3 6 58 9...

Page 19: ...7 9 0 4 1 9 5 48 0 37 2 2 3 55 9 20 6 3 0 51 9 3 1 41 3 98 0 4 9 4 8 12 0 6 5 15 0 48 7 37 5 2 2 56 3 21 8 2 8 53 0 3 1 42 4 98 6 5 0 4 9 80 6 0 2 1 4 9 43 9 35 6 2 9 53 7 15 2 4 8 54 2 3 1 43 6 99 3...

Page 20: ...0 5 5 2 12 1 63 2 45 8 3 6 75 6 17 5 4 4 72 1 4 7 56 2 103 1 4 5 6 7 14 0 8 3 19 3 64 3 46 2 3 5 76 2 18 4 4 1 73 8 4 7 57 7 103 9 4 6 6 9 80 7 0 2 7 6 2 58 0 43 7 4 3 72 7 13 5 6 4 74 8 4 8 58 6 104...

Page 21: ...action 50 1 030 0 808 1 092 55 1 026 0 858 1 073 60 1 020 0 905 1 052 65 1 011 0 951 1 027 70 1 000 1 000 1 000 75 0 989 1 054 0 971 80 0 978 1 114 0 940 Cooling Entering Air WB F Total Capacity Sensi...

Page 22: ...100 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 105 1 003 1 017 1 014 1 016 1 005 1 006 1 002 1 007 110 1 004 1 031 1 027 1 033 1 010 1 011 1 006 1 012 Cooling Entering Air WB F Total Capacity Se...

Page 23: ...Glycol 5 0 995 0 995 1 003 0 989 0 997 1 070 15 0 986 0 986 1 009 0 968 0 990 1 210 25 0 978 0 978 1 014 0 947 0 983 1 360 Methanol 5 0 997 0 997 1 002 0 989 0 997 1 070 15 0 990 0 990 1 007 0 968 0...

Page 24: ...100 1100 Minimum 750 525 750 525 750 525 375 750 036 0 6 1 2 Default 1125 750 975 650 1125 750 525 1125 Maximum 1250 950 1200 800 1250 1250 1250 1250 Minimum 900 600 900 600 900 600 450 900 042 0 6 3...

Page 25: ...1 25 4mm Throw away qty in mm 20 x 20 508 x 508 20 x 20 508 x 508 24 x 24 610 x 610 24 x 24 610 x 610 28 x 28 711 x 711 28 x 28 711 x 711 Weight Operating lbs kg 216 98 0 224 101 6 245 111 1 260 117...

Page 26: ...m 4 0 10 2 9 5 24 1 15 2 38 6 18 5 47 0 22 1 56 1 1 2 5 1 2 5 Vertical Model Electrical Knockouts J 1 2 K 1 2 L 3 4 Low Voltage Ext Pump Power Supply 024 060 in cm 4 6 11 7 6 1 15 5 7 6 19 3 Vertical...

Page 27: ...w Dimensional Data Residential Filter Rack Shown Top View Left Return Top View Right Return U R S Isometric View Left Return Left View Filter Rack Knife Edge T C Power Supply 3 4 19 1mm HV Knockout 1...

Page 28: ...ly 024 060 in cm 4 6 11 7 6 1 15 5 7 6 19 3 Horizontal Model Water Connections 1 2 3 4 5 D In E Out F HWG IN G HWG Out H Condensate Loop Water FPT HWG FPT 024 030 in cm 3 8 9 6 8 8 22 3 13 4 34 0 15 7...

Page 29: ...eturn Front Straight Discharge 5 ASP Back Discharge Condensate 3 4 MPT H Front View 4 3 2 1 A CCP BSP Right Return Right View Filter Rack Knife Edge Air Coil C V U B ASP T S Front P Blower Outlet M O...

Page 30: ...58 3 1 0 5 4 0 3 9 20 1 23 0 30 030 1 208 230 60 1 197 252 13 1 73 0 1 0 5 4 0 3 9 21 5 24 7 35 036 1 208 230 60 1 197 252 15 3 83 0 1 0 5 4 0 3 9 23 7 27 5 40 042 1 208 230 60 1 197 252 17 9 96 0 1 0...

Page 31: ...Controller HEV HEH Series Design Guide 31 31 Heat Controller LLC HEV H SERIES Engineering Design Guide Wiring Diagram 024 060 7602 443 HG Communicating T stat 3Heat 2 cool t stat and 2Heat 1 Cool T s...

Page 32: ...heaters are mounted externally Auxiliary Electric Heat Model Supply Circuit Heater Amps Minimum Circuit Amps Maximum Fuse 240V 208V 240V 208V 240V 208V HGM4A Single 15 8 14 0 19 8 17 1 20 20 HGM5A Sin...

Page 33: ...be AHRI ISO ASHRAE 13256 1 ground source closed loop performance certi ed and listed by a nationally recognized safety testing laboratory or agency Each unit shall be water run tested at the factory E...

Page 34: ...coaxial heat exchanger shall be factory installed in lieu of standard copper construction Thermostat eld installed A multistage auto changeover electronic digital thermostat shall be provided The ther...

Page 35: ...Heat Controller HEV HEH Series Design Guide Notes 35...

Page 36: ...UHTXLUHPHQWV DV WR SURGXFW SHUIRUPDQFH DQG FHUWLILFDWLRQ OO SURGXFWV PHHW DSSOLFDEOH UHJXODWLRQV LQ HIIHFW RQ GDWH RI PDQXIDFWXUH KRZHYHU FHUWLILFDWLRQV DUH QRW QHFHVVDULO JUDQWHG IRU WKH OLIH RI D SU...

Reviews: