background image

 

Chapter 9 Rigidity 

 

15  

Chapter 9 

Rigidity

 

Rigidity and backlash of the drive system greatly affects the performance of the servo system. A detailed 

review of these items is required before designing the equipment and selecting a model number.

 

 

Rigidity 

Fixing the input side (wave generator) and applying torque to the 

output side (flexspline) generates torsion almost proportional to 

the torque on the output side. Figure O18-1 shows the torsional 

angle quantity on the output side when the torque applied on the 

output side starts from zero, increases up to +T0 and decreases 

down to –T0. This is called the “Torque – torsional angle diagram,” 

which normally draws a loop of 0-A-B-A’-B’-A. The slope described 

in  the  “Torque  –  torsional angle diagram”  is represented as the 

spring constant for the rigidity of Harmonic Drive (unit: Nm/rad). 

As shown in Figure 020-2, this “Torque – torsional angle diagram” 

is divided into 3 partitions, and the spring constants in the area are 

represented as K1, K2 and K3. 

K1 – The spring constant when the torque changes from [zero] to 

[T1] 

K2 – The spring constant when the torque changes from [T1] to 

[T2] 

K3 – The spring constant when the torque changes from [T2] to 

[T3]

 

 

Torsional angle can be calculated by the following formulas.  

φ

: torsional angle

 

 Torque T is T1 or less:

 

 Torque T is between T1 and T2:

 

 Torque T is between T2 and T3:

 

The following table shows average values of T1 to T3, K1 to K3 and 

θ

1 to 

θ

2.

 

Spring constant

 

Model 

No. 

Sign 

Unit 

Reduction 

ratio 30 

Reduction 

ratio 50 

Reduction 

ratio 100 

T1 

Nm 

0.016 

0.016 

0.016 

kgf m 

0.0016 

0.0016 

0.0016 

K1 

Nm/rad 

27 

30 

34 

×10

-4

kgf m/arc min 

10 

θ

×10

-4

rad 

5.9 

5.3 

4.7 

arc min 

2.0 

1.8 

1.6 

T2 

Nm 

0.05 

0.05 

0.05 

kgf m 

0.005 

0.005 

0.005 

K2 

Nm/rad 

40 

47 

54 

×10

-4

kgf m/arc min 

12 

14 

16 

θ

×10

-4

rad 

12.5 

10.6 

9.3 

arc min 

4.2 

3.6 

3.1 

K3 

Nm/rad 

51 

57 

67 

×10

-4

kgf m/arc min 

15 

17 

20 

 

3

2

2

K

T

T

+

θ

=

ϕ

2

1

1

K

T

T

+

θ

=

ϕ

1

K

T

=

ϕ

Figure 1 




 

ヒステリシスロス

 

トルク

 

B’ 

+T

0

 

-T

0

 

A’ 




 

K

3

 

K

2

 

K

1

 

T

1

 

T

2

 

トルク

 

θ

1

 

θ

2

 

Tor

si

onal

 an

gl

Tor

si

onal

 a

ngl

Torque 

Torque 

Hysteresis 

loss 

Summary of Contents for CSF-3 Series

Page 1: ...ng the equipment so as to prevent an accident resulting in a serious physical injury damaged by a malfunction or improper operation Product specifications are subject to change without notice for impr...

Page 2: ...re operating the equipment Be careful in handling products and parts Do not give strong shock to parts and units with a hammer Do not scratch or bruise them Possible damage is assumed If you use the e...

Page 3: ...der oscillating movement 6 2 8 How to obtain the static safety coefficient 6 Chapter 3 Efficiency characteristics 7 3 1 Double axial unit type 1U 7 3 2 Gear head type 1U CC 8 Chapter 4 No load running...

Page 4: ...CSF 3 series manual Contents 2 Memo...

Page 5: ...CC Gear head type Specification None standard product SP special specifications such as shapes and performance 1 2 Model Model Reduction ratio Rated torque at input 2000r min Peak torque at start sto...

Page 6: ...mm Mass 13 7 Gear head type CSF 3 XX 1U CC Unit mm Mass 11 4 Note Please confirm the dimensions specification drawing issued by us for detail 4 M1 6 tap 3 2 evenly spaced 4 M1 6 tap 3 2 evenly spaced...

Page 7: ...Mmax Maximum load moment load Mmax permissible moment Mc 2 Checking the life Obtain the average radial load Frav and the average axial load Faav Obtain the radial load coefficient x and the axial loa...

Page 8: ...average radial load Frav Note that the maximum radial load within the t1 section is Fr1 and the maximum radial load within the t2 section is Fr2 Formula 3 How to obtain the average axial load Faav No...

Page 9: ...a 6 LB 10 Life hour Nav Average output rotational speed r min See How to obtain the average load C Basic dynamic load rating N kgf See Table 1 Pc Dynamic equivalent radial load coefficient N kgf See F...

Page 10: ...ain the static safety coefficient of the cross roller bearing by Formula 9 General values under the operating condition are shown in Table 4 You can obtain the static equivalent radial load Po by Form...

Page 11: ...ng pages on each series Measuring condition Grease lubrication Harmonic grease SK 2 Application quantity Appropriate application quantity 3 1 Double axial unit type 1U Reduction ratio 30 Reduction rat...

Page 12: ...60 70 80 90 100 10 0 10 20 30 40 500r min 1000r min 2000r min 3500r min 5000r min 10000r min 0 10 20 30 40 50 60 70 80 90 100 10 0 10 20 30 40 500r min 1000r min 2000r min 3500r min 5000r min 10000r...

Page 13: ...100 10 0 10 20 30 40 500r min 1000r min 2000r min 3500r min 5000r min 10000r min 0 10 20 30 40 50 60 70 80 90 100 10 0 10 20 30 40 500r min 1000r min 2000r min 3500r min 5000r min 10000r min 100 90 80...

Page 14: ...rrection amount by reduction ratio No load running torques of Harmonic Drive vary in accordance with the reduction ratio The values in Graph 1 below are the values for the gear head type 1U CC reducti...

Page 15: ...ing torque 30 0 34 30 0 32 50 0 30 50 0 28 100 0 26 100 0 24 Overdrive starting torque Overdrive starting torque means the instantaneous starting torque that the input side high speed side starts rota...

Page 16: ...ee values on the corresponding page of each series 0peraling the drive without fixing ratcheting will result in earlier abrasion of the teeth and shorter lifespan of the wave generator bearing due to...

Page 17: ...e actual rotating angle as the angle transmission error when any rotating angle is given as an input Example of measurement R er 1 2 er Angle transmission error 1 Input rotating angle 2 Actual output...

Page 18: ...ive correspond to a cycle of the input shaft from the mechanical viewpoint of Harmonic Drive Therefore the frequency is double the input frequency as it is the main element of the error If the charact...

Page 19: ...gram is divided into 3 partitions and the spring constants in the area are represented as K1 K2 and K3 K1 The spring constant when the torque changes from zero to T1 K2 The spring constant when the to...

Page 20: ...zero the torsional angle does not become absolutely zero and a small amount remains This is called hysteresis loss Hysteresis amount Reduction ratio Unit Hysteresis amount 30 10 rad 1 3 arc min 4 5 5...

Page 21: ...1U CC Maintain the recommended case accuracy shown below in design for embedding to ensure that excellent performance of Harmonic Drive is fully demonstrated Recommended accuracy for case embedding R...

Page 22: ...l load and axial load of Model No 3 The values in the graph are those when the average input rpm is 2 000r min and basic rated life of L10 7 000h Example The maximum tolerable radial load Fr will be 3...

Page 23: ...mp the mounting flange Part A in the diagram by bolting Bolt tightening torque for mounting flange Model No 3 Number of bolts 4 Bolt size M1 6 Mounting PCD mm 15 Nm 0 26 Tightening torque kgf m 0 03 M...

Page 24: ...inspection No greasing or grease coating is needed when mounting them in systems Grease specification Lubricant name Harmonic grease SK 2 Manufacturer Harmonic Drive Systems Ambient temperature rage 0...

Page 25: ...Chapter 10 Design and Precautions on assembly 21 Memo...

Page 26: ...duct that has been subject to 1 User s misapplication improper installation inadequate maintenance or misuse 2 Disassembling modification or repair by others than Harmonic Drive Systems Inc 3 Imperfec...

Page 27: ...Minami Ohi Shinagawa ku Tokyo Japan 140 0013 TEL 81 0 3 5471 7800 FAX 81 0 3 5471 7811 Overseas Division 5103 1 Hotakaariake Azumino shi Nagano Japan 399 8301 TEL 81 0 263 81 5950 FAX 81 0 263 50 5010...

Reviews: