background image

©2005 Hamtronics, Inc.; Hilton NY; USA.  All rights reserved.  Hamtronics is a registered trademark.    Revised: 5/17/05

- Page 2 -

OPTIONS. 

Repeater Use. 

E5 provides a COS (carrier oper-

ated switch) output which may be 
connected to a COR module to turn a 
transmitter on and off.  The output 
level is about 8V unsquelched and 0V 
squelched.  There is a resistor in se-
ries with the output to limit current.  
Therefore, the voltage that appears at 
the COR board will depend on the 
load resistance at the input of that 
board.  For best results, be sure that 
the input resistance of the COR board 
is at least 47K.  If the input resistance 
is too low, no damage to the receiver 
will occur; but the squelch circuit hys-
teresis will be affected. 

If your repeater controller uses 

discriminator audio, rather than the 
speaker output, filtered discriminator 
audio is available at E4.  The level is 
about 2V p-p.  

Note that discriminator 

audio is not de-emphasized or 

squelched.  

If you need audio which is 

squelched, take it from Repeater Au-
dio terminal E1. 

If your controller uses low level 

audio and has a high input imped-
ance (20K or higher), squelched audio 
can be obtained from E1 independent 
of the VOLUME control. 

Discriminator Meter. 

If you wish to use a discriminator 

meter and you are handy in designing 
with op-amps, you can run a sample 
of the dc voltage at 

DISCRIMINATOR

 

output terminal E4 to one input of an 
op-amp and tie the other input to a 
voltage divider pot set to provide a ref-
erence voltage of about +3.3Vdc.  

S-Meter. 

There is no s-meter function, as 

such, available in i-f amplifier ic's 
made for professional receivers; how-
ever, a signal strength indication is 
available at test point TP-4.  This volt-
age is a function of the noise level de-
tected in the squelch circuit.  It also 
varies with SQUELCH control setting. 
With the SQUELCH set to where the 
squelch just closes, the dc voltage at 
TP-4 is about -0.5V with no signal and 
+1V with full quieting signal.  You can 
tap off this test point with a high-
impedance circuit, such as an op-
amp, to drive a meter or a computer-
ized repeater controller. 

Subaudible Tone Decoder. 

To use our TD-5 Subaudible Tone 

Decoder or a similar module, connect 
its audio input to 

DISCRIMINATOR

 

terminal E4.  If you want to use it to 
mute the audio (instead of inhibiting a 
repeater transmitter as is normally 

done), connect the mute output of the 
TD-5 to E1 on the receiver. 

ADJUSTMENTS. 

Frequency Netting. 

All crystals age a little over a long 

period of time; so it is customary to 
tweak any receiver back onto the pre-
cise channel frequency once a year 
during routine maintenance.  Because 
modern solid state equipment doesn’t 
require much routine maintenance, 
many receivers don’t get their oscilla-
tors tweaked as a matter of routine 
any more, but they should.  

The adjustment should be done 

using an accurate service monitor or 
frequency counter.  Of course, make 
sure the test equipment is exactly on 
frequency first by checking it against 
WWV or another frequency standard. 

The channel frequency is trimmed 

precisely on frequency with a small 
variable capacitor, which is accessible 
through a hole in the top of the shield 
can on the TCXO.  The proper tool is a 
plastic wand with a small metal bit in 
the end. 

To perform this adjustment, it is 

first necessary to verify that the dis-
criminator is properly adjusted.  Do 
this by connecting a dc voltmeter to 
E4.  Connect a signal generator set for 
10.700 MHz to TP3, and set the level 
for a relatively strong signal so there 
is very little white noise.  Adjust dis-
criminator coil T2 for 3.3Vdc.  Then, 
reconnect the signal generator to an-
tenna connector J1, and set it for the 
precise channel frequency.  You can 
also use a strong signal on the air if 
you are sure it is right on frequency.  
Adjust the TCXO capacitor for 3.3Vdc 
(to match the voltage obtained with 
the 10.700 MHz signal).

 

Setting Channel Frequency. 

The channel frequency is deter-

mined by frequency synthesizer cir-
cuits, which use a dip switch in 
conjunction with programming in a 
microcontroller to set the channel.  
The microcontroller reads the dip 
switch information and does mathe-
matics, applying serial data to the 
synthesizer ic whenever power is ap-
plied.  Following is a discussion of 
how to set the dip switch to the de-
sired channel frequency. 

 

 NOTE:

   

If the frequency is 

changed more than about 1 MHz, a 
complete alignment of the receiver 
should be performed, as described in 
later text.  Optimum operation only oc-
curs if the synthesizer is adjusted to 
match the frequency switch setting and 
all the tuned amplifier circuits are 

peaked for the desired frequency. 

To determine what channel fre-

quency to use, the microcontroller 
adds the frequency information from 
the dip switch to a “base” frequency 
stored in eprom used for microcontrol-
ler programming.  Each model of the 
R302 Receiver has a particular base 
frequency.  For example, the R302-2 
has a base frequency of 144.000 MHz, 
as shown in Table 1. 

Dip switch settings are binary, 

which means each switch section has 
a different weighting, twice as great as 
the next lower section.  Sections have 
weights such as 5 kHz, 10 kHz, etc., 
all the way up to 2.56 MHz

.  (See Ta-

ble 2 or the schematic diagram for 
switch values.)

 

The system sounds cumbersome, 

but it really is fairly simple, and you 
don’t need to do this frequently.  A 
piece of paper or a small calculator is 
handy to aid in determining which 
sections of the switch to turn on.  
When done, you might want to record 
the switch settings in table 3 for fu-
ture reference. 

Begin by subtracting the base fre-

quency, e.g., 144.000, from the de-
sired frequency to determine the total 
value of all the switch sections re-
quired to be turned on.   

If the difference is more than 

5.120MHz, turn on dip switch section 
1, and subtract 5.120 from the start-
ing frequency.  Otherwise, turn off 
section 1. 

Likewise, look at the remainder 

frequency and see if you can subtract 
2.560  from  it.    If  so,  turn  on  dip 
switch section 2, and subtract 2.560 
from to get a new remainder.  Other-
wise, turn off section 2. 

Do the same for each of the other 

sections, from highest to lowest 
weighting, in sequence.  Each time 
you consider the remainder, turn on 
the switch section with the highest 
weighting which will fit within the re-
mainder without exceeding it.  Each 
time it is found necessary to turn on a 
switch section, subtract the value of 
that section from the remainder to get 
the new remainder. 

As an example

, let us consider 

how to set the Receiver for 146.94 
MHz.  The following discussion is bro-
ken down into steps so you can visu-
alize the process easier. 

a.  146.940 - 144.000 base freq. = 

2.940 MHz remainder.  Turn on 
switch #2, which represents the larg-
est increment to fit remainder. 

b.  2.940 - 2.560 value of switch 

#2 = 0.380 MHz.  Turn on #5, which is 
0.320 MHz, the largest increment to 
fit the remainder. 

Summary of Contents for R302 Series

Page 1: ...an be attached to a connector or feedthrough capaci tors used on the cabinet in which it is installed Be very careful not to route the wiring near the components on the left hand side of the board which contains sensitive loop filter and vco circuits which could pick up noise from the wiring Power Connections The receiver operates on 13 6 Vdc at about 200 mA peak with full audio Current drain with...

Page 2: ...criminator is properly adjusted Do this by connecting a dc voltmeter to E4 Connect a signal generator set for 10 700 MHz to TP3 and set the level for a relatively strong signal so there is very little white noise Adjust dis criminator coil T2 for 3 3Vdc Then reconnect the signal generator to an tenna connector J1 and set it for the precise channel frequency You can also use a strong signal on the ...

Page 3: ...ands a Set the SQUELCH pot fully counterclockwise and the VOLUME pot just a little clockwise b Connect speaker and 13 6 Vdc You should hear white noise c Set dip switches for desired frequency d Connect voltmeter to TP1 Ad just vco coil L1 for 2 0Vdc Al though the vco will operate over a wide range of tuning voltages from about 0 5V to 4 5V operation is opti mum if the vco is adjusted to 2 0V e Co...

Page 4: ...nthe sizer are applied to synthesizer U2 by microcontroller U1 Everything the synthesizer needs to know about the band division schemes reference fre quency and oscillator options is gen erated by the controller Information about the base frequency of the band the receiver is to operate on and the channel within that band is calculated in the controller based on information programmed in the eprom...

Page 5: ...ole board will be installed in a shielded enclosure so we elected to keep the size small by not using a separate shield on the vco However this means that you must use care to keep wiring away from the vco circuit at the right side of the board Having the board in a metal enclosure will shield these sensitive circuits from flo rescent lights and other strong sources of noise Because the frequency ...

Page 6: ...no to 1 Vdc full quieting E4 Freq Varies with frequency of input signal Voltage at this point normally is ad justed for 3 3Vdc with a signal exactly on fre quency Can vary a little without being a problem Table 5 Typical Xstr DC Voltages Xstr Stage E S B G1 C D G2 Q1 vco 1 3 2 0 6 5 Q2 buffer 0 0 7 4 5 Q3 dc filter 6 8 7 4 7 6 Q4 RF ampl 0 0 7 5 3 8 Q5 Mixer 0 0 7 6 0 Q6 sq open 0 0 8 sq closed 0 ...

Page 7: ...atched set of 4 FL5 455kHz ceramic filter J1 RCA Jack L2 0 33µH RF choke red sil orn orn L3 L8 2 t slug tuned red L9 0 33µH RF choke red sil orn orn Q1 Q2 MSC3130 Q3 MMBT3904 Q4 Q5 BF998 MOS FET Q6 MMBT3904 R1 180Ω R2 2 2K R3 2 Meg R4 27Ω R5 10K R6 47K R7 R8 2 2K R9 10K R10 6 8K R11 3 9K R12 180Ω R13 47Ω R14 15K R15 470Ω R16 3 9meg R17 R18 100K R19 47K R20 330K R21 15K R22 47K R23 100K panel mount...

Page 8: ... 2005 Hamtronics Inc Hilton NY USA All rights reserved Hamtronics is a registered trademark Revised 5 17 05 Page 8 ...

Page 9: ... 2005 Hamtronics Inc Hilton NY USA All rights reserved Hamtronics is a registered trademark Revised 5 17 05 Page 9 ...

Reviews: