Table 2 Site installation guidelines
Guideline
Details
Do not hang the sensor by the sensor cable.
The sensor cable may stretch and cause measurement
errors.
Prevent the sun from shining directly on the sensor.
Intense, direct sunlight on the sensor will increase the
temperature of the sensor housing higher than the ambient
air temperature. This can cause inaccurate measurements.
For the US9001 (downlooking) sensor, make sure
that the lowest mounting nut is more than 6.4 mm
(0.25 in.) from the sensor face. Refer to
If the mounting nut is near the sensor face, level spikes
can occur at extreme temperatures.
Hand tighten the hex nut, then tighten ½ turn. Do not
overtighten the hex nut or the isolation gasket will not
decrease vibrations.
Prevent strong winds and air currents from blowing
directly under the sensor.
The strength of the ultrasonic signal is decreased by the
wind.
Install the sensor so that the ultrasonic signal does
not hit the sides of a small pipe or narrow
flumes/channels.
The ultrasonic signal emits a half beam angle of 6 °. Refer
to
distance for the measurement target to prevent false
echoes and incorrect level measurements. Refer to the
FSDATA Desktop documentation to change the application
settings.
Install the sensor sufficiently high above the surface
of the water so that it does not go under the water
when the level increases.
The speed of sound in water is much faster than in air. A
sensor that is under the water will give unusual values.
Figure 3 US9001 (downlooking) sensor
1
Hex nut
2
Gasket, vibration isolation
English
7
Summary of Contents for US9001
Page 2: ...English 3 Fran ais 18 Espa ol 33 Portugu s 48 63 78 93 2...
Page 65: ...1 2 FCC 15 A 1 2 3 4 5 1 66 2 66 1 1 6 35 mm 0 25 in 1 2 65...
Page 67: ...2 US9001 6 4 mm 0 25 in 3 6 4 5 FSDATA Desktop 3 US9001 1 2 67...
Page 68: ...4 US9001 1 2 5 US9003 1 2 0 382 91 cm 0 00 150 75 in 68...
Page 69: ...1 6 2 arc tan D2 D1 80 5 D2 D1 3 6 6 7 8 7 US9001 69...
Page 70: ...8 US9003 9 13 70...
Page 71: ...9 V 10 Palmer Bowlus 71...
Page 72: ...11 1 4 12 Leopold Lagco 4 72...
Page 73: ...13 H Sigma AV9000 Flo Dar Flo Tote FL AS950 14 73...
Page 75: ...3 3 1 2 3 4 75...
Page 80: ...1 2 FCC 15 A 1 2 3 4 5 1 81 2 81 1 1 6 35 mm 1 2 80...
Page 81: ...1 US9001 1 US9001 9 14 m 4 2 2 5 2 3 3 6 2 3 2 US9003 1 US9003 9 14 m 4 2 2 5 3 2 2 3 2974 81...
Page 82: ...2 US9001 6 4 mm 3 1 2 1 2 6 4 5 DATA Desktop 3 US9001 1 2 82...
Page 83: ...4 US9001 1 2 5 US9003 1 2 0 382 91 cm 83...
Page 84: ...1 6 2 arc tan D2 D1 80 5 D2 D1 3 1 2 6 6 7 8 84...
Page 85: ...7 US9001 8 US9003 Flow Method 85...
Page 86: ...9 13 9 86...
Page 87: ...10 Palmer Bowlus 11 Parshall 1 4 4 87...
Page 88: ...12 Leopold Lagco 13 H Sigma AV9000 Flo Dar Flo Tote 2 FL AS950 14 88...
Page 91: ...13 34 cm 0 cm 90 Web 6820 US9003 9488700 15 24 m 9489000 82 29 m 9488100 30 48 m 8315200 91...
Page 95: ...1 2 FCC Part 15 A 1 2 3 4 5 1 1 96 2 96 1 1 6 35 mm 0 25 in 1 2 95...
Page 97: ...2 US9001 6 4 mm 0 25 in 3 6 4 5 FSDATA 3 US9001 1 2 97...
Page 98: ...4 US9001 1 2 5 US9003 1 2 0 382 91 cm 0 00 150 75 in 98...
Page 99: ...1 6 2 arc tan D2 D1 80 5 D2 D1 3 6 6 7 8 99...
Page 100: ...7 US9001 8 US9003 1 1 1 Flow Method 100...
Page 101: ...1 1 1 9 13 9 V 10 Palmer Bowlus 101...
Page 102: ...11 Parshall 1 4 12 Leopold Lagco 4 102...
Page 103: ...13 H Sigma AV9000 Flo Dar Flo Tote FL AS950 14 103...
Page 105: ...3 3 1 2 3 4 105...
Page 108: ......
Page 109: ......