Product components
Make sure that all components have been received. Refer to
any items are missing or damaged, contact the manufacturer or a sales
representative immediately.
Figure 4 Instrument components
1
MET ONE 6000 series particle
counter
5
10-pin connector with clam shell
3
2
Sample (isokinetic) probe with
tube
1
6
5-pin connector with clam shell
4
3
Sample (isokinetic) probe with
tube
2
7
Setup utility CD
4
DIN rail mounting kit
8
Service port cable (8-pin DIN to 9-
pin serial connector)
5
1
1.0 cfm units only
2
0.1 cfm units only
3
All units except Ethernet
4
Ethernet only
5
Only one service port cable is supplied per order.
Installation
Installation guidelines
N O T I C E
Before a cleaning or disinfecting cycle is started, stop the vacuum pump and put
a cover on the air inlet fitting.
N O T I C E
High internal temperatures cause damage to the instrument components.
• Install the instrument indoors in a clean, dry, well ventilated,
temperature controlled location with minimum vibration.
• If the room is washed down at regular intervals, install the instrument
outside of the room. Only the air inlet and vacuum tubes will go into
the clean room. As an alternative, put the instrument in the clean room
in a sealed box. Connect all tubes and cables to the instrument
through the box. Operation of the instrument in an enclosed box may
increase the temperature around the instrument and decrease the
performance and life of the instrument.
• Do not operate the instrument in direct sunlight or next to a heat
source.
• Install the instrument as close to the sample source as possible. Make
sure that the distance is not more than 3 m (10 ft). An inlet tube length
longer than 3 m (10 ft) can cause a loss of particles larger than 1 μm.
If an inlet tube length longer than 3 m (10 ft) is necessary, compare
the results between a portable particle counter and this instrument.
• Keep the air flow in a constant downward direction. When possible,
mount the instrument directly below the sample point.
Vacuum system guidelines
• Put the vacuum pump in a central location. There must be sufficient
vacuum for all instruments in the network.
• Use a distribution manifold that keeps vacuum loss to a minimum.
Typical materials used for vacuum distribution include brazed copper
pipe, schedule 80 PVC pipe or tubing such as Cobolite
®
.
8
English
Summary of Contents for MET ONE 6003
Page 2: ...English 3 Fran ais 24 Espa ol 48 72 91 113 2...
Page 13: ...Figure 9 5 pin connector wiring Figure 10 10 pin connector wiring English 13...
Page 75: ...1 3 1 1 ModBus FX 2 Status 10Base T 100Base T 2 2 1 3 2 4 3 3 75...
Page 77: ...3 m 10 ft 3 m 10 ft 1 m 3 m 10 ft schedule 80 PVC Cobolite DIN DIN 5 77...
Page 78: ...5 DIN 79 6 90 90 T 78...
Page 81: ...9 5 10 10 81...
Page 83: ...12 1 5 2 6 4 20 mA 3 24 VDC 7 24 VDC 4 8 13 1 3 2 4 VHP IPA 83...
Page 89: ...3 PC CSV 15 1 1 7 cfm L min 2 8 cfm L min 3 9 RH 4 10 5 11 6 1 89...
Page 90: ...9 9 1 90 X 90 X FMS 90...
Page 95: ...2 2 1 3 2 4 3 3 3 1 3 5 2 4 3 0 0 1 cfm 0 3 m 0 5 m F 1 1 0 cfm 0 5 m N 95...
Page 97: ...3 m 3 m 1 m 3 m 80 PVC Cobolite DIN DIN 5 97...
Page 98: ...5 DIN 99 6 90 90 T 98...
Page 99: ...6 1 3 2 90 4 T 2 3 m2 1 2 2 95 30 cm 30 cm 4 4 Hytrel Bevaline Tygon Hytrel Bevaline Tygon 99...
Page 112: ...HACH Japan 9 9 1 112 X 112 X FMS 1 112...
Page 114: ...5 1 CE 1 ISO21501 4 CD 114...
Page 119: ...DIN DIN 5 5 DIN 119...
Page 120: ...120 6 90 90 T 6 1 3 2 90 4 T 2 3 m2 25 ft2 1 120...
Page 123: ...9 5 10 10 123...
Page 125: ...12 1 5 2 6 4 20 mA 3 24 VDC 7 24 VDC 4 8 13 1 3 2 4 VHP IPA 125...
Page 133: ...9 9 1 133 X 133 X FMS 1 133...
Page 134: ......
Page 135: ......