background image

Proceedings of the Institute of Acoustics

 

 
 

Table 12. Use of available room response controls. 

Room Response Control 

Usage vs. availability 

% Usage 

Midrange Level 

27/33 

82% 

Treble Level 

22/33 

67% 

Bass Tilt 

37/67 

55% 

Treble Tilt 

11/37 

30% 

Bass Level 

  8/33 

24% 

Bass Roll-off 

10/67 

15% 

 
Appendix D shows quartile difference and RMS deviations for each loudspeaker in the study, for the 
broadband and each subband. The quartile difference or RMS deviation after equalisation is sub-
tracted from the same before equalisation. An improvement will produce a negative value of differ-
ence. Quartile difference and RMS deviation values represent different ways to look at the deviation 
from the distribution median value. Quartile limits are more robust to outlier values while the RMS 
value is affected by them. 
For small two-way systems (Figures 9-10

41

), the main improvement is seen at low frequencies in 

four out of 12 cases. Only in one case is there is a significant improvement in the broadband flat-
ness. 
The broadband flatness of the two-way systems is improved in four (quartile data, Figure 11) or 
eight (RMS data, Figure 12

41

) cases out of 22. An equal number of reductions and increases of low 

frequency quartile values can be seen. MF subband quartile values improve in one case and dete-
riorate in 5 cases while there are no changes in the HF subband. The flatness in the broadband and 
LF subband as indicated by RMS deviation data has improved, indicating a reduction of outlier val-
ues. The MF and HF subbands show no changes or a slight increase of the RMS deviation. 
Three-way systems show in most cases a clear reduction of both the quartile difference (Figure 
13

41

) and RMS deviation (Figure 14

41

) for the broadband and LF subband. There is no significant 

change in the MF and HF subbands.  
A similar trend is seen for the three large systems included in this study (Figures 15-16

41

). Mainly 

the LF subband flatness is improved and this is reflected in broadband flatness improvement. 
Some responses appear to worsen in terms of quartile difference and RMS deviation in the sub-
band analysis. This was not evident in the broadband metrics, indicating that the arbitrary definition 
of subband frequency division introduced some error. The cases where this happened originally suf-
fered from severe response anomalies due to extremely bad room acoustics. The equalisation was 
not designed to compensate for such problems. 
Subband median level differences (Figure 3) demonstrate the broadband frequency balance. 
Acoustical loading of a loudspeaker by nearby boundaries is reflected in the LF subband median 
level before equalisation, especially for three-way models that are typically flush mounted. The me-
dian level of the LF subband is reduced by equalisation, indicating that equalisation compensates 
well for this loading. Smaller difference in median values across subbands shows that equalisation 
has improved broadband flatness. The largest improvement is seen in three-way loudspeakers. For 
two-way systems equalisation has improved broadband flatness only marginally. The broadband 
flatness improvement is mainly a result of better alignment of the LF subband with the MF and HF 
subbands. The equalisation has not only reduced the variation inside individual subbands but also 
improved the broadband flatness of the acoustical response. This should translate to a reduced au-
dio colouration at the listening position. 
All loudspeakers pooled together (Figure 3), equalisation reduces median value variance for the LF 
subband for all loudspeaker types. Only in three-way systems an improvement is seen also in MF 
and HF subband median value variances. 
Figure 4 shows pooled results for all products and results for each product cathegory, excluding the 
three main monitors. For all models, the broadband flatness has been improved (by 0.4 dB), and 
the RMS deviation has been reduced. The largest reduction is seen in three-way systems. To some 
extent, the result is similar for the quartile difference but the small two-way and two-way systems do 
not experience such large improvement. This indicates that the improvement is mainly a reduction 
of extreme magnitude values (peak height and notch depth) in the low frequency response. 
 

Summary of Contents for Proceedings of Institute of Ac

Page 1: ... the optimisation algorithm is then investigated by studying the statistical properties of frequency responses before and after equalisa tion 2 IN SITU EQUALISATION AND ROOM RESPONSE CONTROLS 2 1 Equalisation Techniques The purpose of room equalisation is to improve the perceived quality of sound reproduction in a lis tening environment not to convert the listening room anechoic In fact listeners ...

Page 2: ... from colora tion Also despite the widespread use of equalisation it is still hard to provide exact timbre match ing between different environments Several methods have been proposed for more exact inversion of the frequency response to achieve a close approximation of unity transfer function no change to magnitude or phase within a certain bandwidth of interest16 24 Some researchers have also sho...

Page 3: ...n parameters x ℜn Multi objective optimisation is concerned with the minimisation of a vector of objectives E x that may be subject to constraints or bounds Several robust methods exist for optimising functions with design parameters x having a continuous value range37 3 1 Efficiency of Direct Search The room response controls of an active loudspeaker form a discrete valued set of frequency re spo...

Page 4: ...d less or no bass roll off is eventually required The min max type objective function to be minimised is given by Equation 2 3 2 2 1 0 0 max max min f f f f f f f x f x f a f x f x f a E b a m b f m a f m 2 where x f is the smoothed magnitude of the in situ frequency response of the system am f is the bass roll off setting m currently being tested x0 f is the target response fa defines the bass ro...

Page 5: ... The least squares type objective function to be minimised is the same as shown in Equation 3 However am f is the bass tilt and bass level combination m currently being tested together with the fixed midrange and treble level ratio setting found in the previous stage Also f1 and f2 now define the loudspeaker pass band Table 7 The user can select both values The default values are the 3 dB lower cu...

Page 6: ...response around fLF when off axis loudspeaker location reduces significantly the high frequency level when a loudspeaker is positioned behind a screen or when the measuring distance is very long It is naturally preferable to remove such causes of problems if possible 3 4 2 Target for Optimisation There are five target curves from which to select 1 Flat is the default setting for a studio monitor T...

Page 7: ...system parameters Parameter Equipment Setting Measurement System WinMLS200039 Microphone Neutrik 3382 40 Sample rate fs 48 kHz MLS sequence order 14 16 Averages 1 Impulse response length 0 341 s 1 36 s Time window Half cosine FFT size 16384 65536 Frequency resolution 2 93 Hz 0 733 Hz 4 1 Statistical Data Analysis Statistical analysis was conducted to assess the ability of the equalisation algorith...

Page 8: ... band of equalisation crosses are indicated on the graphical output The proposed room response control settings are shown and the effect of these settings is visualised in the response plot The treble tilt midrange level and bass tilt controls have been set The equalisation corrects the low frequency alignment and improves the linearity across the whole passband The optimised result is displayed i...

Page 9: ... green background as well as the error function value and processing time Figure 2 Case example statistical analysis output 4 3 Results 63 loudspeakers were measured before and after equalisation 12 small two way 22 two way 30 three way and three large systems Depending on the product type not all of the room response controls are available Tables 1 4 Table 12 shows the number times a control was ...

Page 10: ...in terms of quartile difference and RMS deviation in the sub band analysis This was not evident in the broadband metrics indicating that the arbitrary definition of subband frequency division introduced some error The cases where this happened originally suf fered from severe response anomalies due to extremely bad room acoustics The equalisation was not designed to compensate for such problems Su...

Page 11: ...is heuristics is the order in which these choices should be taken A considerable improvement in the speed of optimisation was achieved relative to an exhaustive search The optimisation algorithm is robust to a wide variety of situations such as variations of room acoustics differently sized loudspeakers with differing anechoic responses and varying in situ responses42 The optimisation is sufficien...

Page 12: ...to 75 Percentile Difference Change due to Equalisation Small models 3 2 1 0 1 Broadband LF MF HF Level dB RMS Deviation Change due to Equalisation Small models 5 4 3 2 1 0 1 Broadband LF MF HF Level dB 25 to 75 Percentile Difference Change due to Equalisation 2 way models 3 2 1 0 1 Broadband LF MF HF Level dB RMS Deviation Change due to Equalisation 2 way models 5 4 3 2 1 0 1 Broadband LF MF HF Le...

Page 13: ...nd tune studios and listening rooms 7 ACKNOWLEDGEMENTS The authors would like to thank Mr Steve Fisher SCV London for the original inspirational idea and some of the measurements used in the statistical analysis Mr Olli Salmensaari Finnish Broadcasting Corporation for additional measurements Mr Lars Morset Morset Sound Develop ment and Genelec Oy Parts of this work are presented in more detail as ...

Page 14: ... Regularisation IEEE Trans Speech Audio Proc vol 6 pp 189 194 1998 Mar 22 Johansen L G and Rubak P Listening Test Results from a new Loudspeaker Room Cor rection System presented at 110th Conv Audio Eng Soc preprint 5323 2001 May 23 Johansen L G and Rubak P Design and Evaluation of Digital Filters Applied to Loud speaker Room Equalisation presented at 108th Conv Audio Eng Soc preprint 5172 2000 Fe...

Page 15: ...Conv Audio Eng Soc preprint 5730 2003 Mar 39 Morset Sound Development WinMLS2000 http www winmls com 2003 Feb 40 NTI AG Neutrik Test Instruments 3382 Microphone http www nt instruments com 2003 Feb 41 Goldberg A P Mäkivirta A Statistical Analysis of an Automated In Situ Frequency Re sponse Optimisation Algorithm for Active Loudspeakers proceedings of the 23rd Conf Au dio Eng Soc 2003 May 42 Goldbe...

Page 16: ...red Measurement Microphone Compensation CTRL M Measurement Dump Reset Graph and Outputs Get Model Number Apply Mic Compensation Remove DC Window FFT and Smooth Load Impulse Response Set DIPtimisation Range Display Original Freq Response Display Target Response Calculate Target Resp Stored Measurement CLOSE DIPtimiser 1 2 Figure 6 Software flow chart part 1 CLOSE Set Frequency Range START ...

Page 17: ... Is Small System Load Filters Model Filters Preset BRO Find ML TL Ratio Set BL BT wrt ML TL Reset BRO Set TT Display Final Tone Control Settings Display Final Frequency Response Set BT Is 3 way System 1 2 Figure 6 continued Software flow chart part 2 Y N N Y ...

Reviews: