background image

Proceedings of the Institute of Acoustics

 

 
 

When a response is flat in a broadband sense, the medians calculated over various (large) fre-
quency bands are similar. In this study, differences of median sound pressure between subbands 
are taken to indicate that broadband tonal balance of a response is not flat. An improvement in the 
broadband tonal balance due to equalisation is then indicated by a reduction of median value differ-
ences.  

Table 11. Frequency band definitions the statistical data analysis; 

f

LF

 is the frequency of the lower –

3 dB limit of the frequency range. 

 

Frequency Range Limit 

Bandwidth Name 

Low 

High 

Broadband 

f

LF

 

15 kHz 

LF 

f

LF

 

400 Hz 

MF 

400 Hz 

3.5 kHz 

HF  

3.5 kHz 

15 kHz 

 
 

4.2 

Example of Statistical Data Analysis 

Figure 1 shows an example where room response control settings are calculated according to the 
optimisation algorithm. The equalisation target is a flat magnitude response (straight line at 0dB 
level). The in-situ frequency response of the loudspeaker was recorded before equalisation, i.e. 
when all the room response controls were set to their default position, which has no effect to the re-
sponse. The appropriate room response control settings were calculated using the optimisation al-
gorithm, applied to the loudspeaker and the corrected in-situ frequency response plotted. The loud-
speaker’s passband (triangles) and the frequency band of equalisation (crosses) are indicated on 
the graphical output. The proposed room response control settings are shown and the effect of 
these settings is visualised in the response plot. The treble tilt, midrange level and bass tilt controls 
have been set. The equalisation corrects the low frequency alignment and improves the linearity 
across the whole passband. The optimised result is displayed in green and dark grey boxes. The 
green boxes are room response controls that should be set on the loudspeaker. The light grey 
boxes are room response controls that are not present on the loudspeaker. Also displayed in this 
area is the error function, which is an RMS of the optimised frequency response pass band. 
Figure 2 shows a statistical analysis of the same loudspeaker presented in graphical form. The up-
per three plots were calculated before equalisation and the lower three plots after equalisation. The 
plots display the values of percentiles in the magnitude value distribution (box plot), the histogram of 
values and the fit of the magnitude values to normal distribution before and after equalisation. 
These plots clearly show that the deviation in magnitude data has been reduced. This is illustrated 
by the reduced range in the box plot and the value histogram, as well as a better fit to a normal dis-
tribution in the normal probability plot. 
Two detailed case studies can be seen in

38

.  Responses before an after equalisation are shown to-

gether with room acoustic analysis to show that the algorithm performs well, even in widely varying 
conditions. 

Summary of Contents for Proceedings of Institute of Ac

Page 1: ... the optimisation algorithm is then investigated by studying the statistical properties of frequency responses before and after equalisa tion 2 IN SITU EQUALISATION AND ROOM RESPONSE CONTROLS 2 1 Equalisation Techniques The purpose of room equalisation is to improve the perceived quality of sound reproduction in a lis tening environment not to convert the listening room anechoic In fact listeners ...

Page 2: ... from colora tion Also despite the widespread use of equalisation it is still hard to provide exact timbre match ing between different environments Several methods have been proposed for more exact inversion of the frequency response to achieve a close approximation of unity transfer function no change to magnitude or phase within a certain bandwidth of interest16 24 Some researchers have also sho...

Page 3: ...n parameters x ℜn Multi objective optimisation is concerned with the minimisation of a vector of objectives E x that may be subject to constraints or bounds Several robust methods exist for optimising functions with design parameters x having a continuous value range37 3 1 Efficiency of Direct Search The room response controls of an active loudspeaker form a discrete valued set of frequency re spo...

Page 4: ...d less or no bass roll off is eventually required The min max type objective function to be minimised is given by Equation 2 3 2 2 1 0 0 max max min f f f f f f f x f x f a f x f x f a E b a m b f m a f m 2 where x f is the smoothed magnitude of the in situ frequency response of the system am f is the bass roll off setting m currently being tested x0 f is the target response fa defines the bass ro...

Page 5: ... The least squares type objective function to be minimised is the same as shown in Equation 3 However am f is the bass tilt and bass level combination m currently being tested together with the fixed midrange and treble level ratio setting found in the previous stage Also f1 and f2 now define the loudspeaker pass band Table 7 The user can select both values The default values are the 3 dB lower cu...

Page 6: ...response around fLF when off axis loudspeaker location reduces significantly the high frequency level when a loudspeaker is positioned behind a screen or when the measuring distance is very long It is naturally preferable to remove such causes of problems if possible 3 4 2 Target for Optimisation There are five target curves from which to select 1 Flat is the default setting for a studio monitor T...

Page 7: ...system parameters Parameter Equipment Setting Measurement System WinMLS200039 Microphone Neutrik 3382 40 Sample rate fs 48 kHz MLS sequence order 14 16 Averages 1 Impulse response length 0 341 s 1 36 s Time window Half cosine FFT size 16384 65536 Frequency resolution 2 93 Hz 0 733 Hz 4 1 Statistical Data Analysis Statistical analysis was conducted to assess the ability of the equalisation algorith...

Page 8: ... band of equalisation crosses are indicated on the graphical output The proposed room response control settings are shown and the effect of these settings is visualised in the response plot The treble tilt midrange level and bass tilt controls have been set The equalisation corrects the low frequency alignment and improves the linearity across the whole passband The optimised result is displayed i...

Page 9: ... green background as well as the error function value and processing time Figure 2 Case example statistical analysis output 4 3 Results 63 loudspeakers were measured before and after equalisation 12 small two way 22 two way 30 three way and three large systems Depending on the product type not all of the room response controls are available Tables 1 4 Table 12 shows the number times a control was ...

Page 10: ...in terms of quartile difference and RMS deviation in the sub band analysis This was not evident in the broadband metrics indicating that the arbitrary definition of subband frequency division introduced some error The cases where this happened originally suf fered from severe response anomalies due to extremely bad room acoustics The equalisation was not designed to compensate for such problems Su...

Page 11: ...is heuristics is the order in which these choices should be taken A considerable improvement in the speed of optimisation was achieved relative to an exhaustive search The optimisation algorithm is robust to a wide variety of situations such as variations of room acoustics differently sized loudspeakers with differing anechoic responses and varying in situ responses42 The optimisation is sufficien...

Page 12: ...to 75 Percentile Difference Change due to Equalisation Small models 3 2 1 0 1 Broadband LF MF HF Level dB RMS Deviation Change due to Equalisation Small models 5 4 3 2 1 0 1 Broadband LF MF HF Level dB 25 to 75 Percentile Difference Change due to Equalisation 2 way models 3 2 1 0 1 Broadband LF MF HF Level dB RMS Deviation Change due to Equalisation 2 way models 5 4 3 2 1 0 1 Broadband LF MF HF Le...

Page 13: ...nd tune studios and listening rooms 7 ACKNOWLEDGEMENTS The authors would like to thank Mr Steve Fisher SCV London for the original inspirational idea and some of the measurements used in the statistical analysis Mr Olli Salmensaari Finnish Broadcasting Corporation for additional measurements Mr Lars Morset Morset Sound Develop ment and Genelec Oy Parts of this work are presented in more detail as ...

Page 14: ... Regularisation IEEE Trans Speech Audio Proc vol 6 pp 189 194 1998 Mar 22 Johansen L G and Rubak P Listening Test Results from a new Loudspeaker Room Cor rection System presented at 110th Conv Audio Eng Soc preprint 5323 2001 May 23 Johansen L G and Rubak P Design and Evaluation of Digital Filters Applied to Loud speaker Room Equalisation presented at 108th Conv Audio Eng Soc preprint 5172 2000 Fe...

Page 15: ...Conv Audio Eng Soc preprint 5730 2003 Mar 39 Morset Sound Development WinMLS2000 http www winmls com 2003 Feb 40 NTI AG Neutrik Test Instruments 3382 Microphone http www nt instruments com 2003 Feb 41 Goldberg A P Mäkivirta A Statistical Analysis of an Automated In Situ Frequency Re sponse Optimisation Algorithm for Active Loudspeakers proceedings of the 23rd Conf Au dio Eng Soc 2003 May 42 Goldbe...

Page 16: ...red Measurement Microphone Compensation CTRL M Measurement Dump Reset Graph and Outputs Get Model Number Apply Mic Compensation Remove DC Window FFT and Smooth Load Impulse Response Set DIPtimisation Range Display Original Freq Response Display Target Response Calculate Target Resp Stored Measurement CLOSE DIPtimiser 1 2 Figure 6 Software flow chart part 1 CLOSE Set Frequency Range START ...

Page 17: ... Is Small System Load Filters Model Filters Preset BRO Find ML TL Ratio Set BL BT wrt ML TL Reset BRO Set TT Display Final Tone Control Settings Display Final Frequency Response Set BT Is 3 way System 1 2 Figure 6 continued Software flow chart part 2 Y N N Y ...

Reviews: