background image

6

7

A good understanding of the basic operation of the refrigeration 

system is essential for the service technician. Without this 

understanding, accurate troubleshooting of refrigeration system 

problems will be more difficult and time consuming, if not (in some 

cases) entirely impossible. The refrigeration system uses four 

basic principles (laws) in its operation they are as follows: 
1.    "Heat always flows from a warmer body to a cooler body."
2.    "Heat must be added to or removed from a substance before 

a change in state can occur"

3.    "Flow is always from a higher pressure area to a lower 

pressure area."

4.    "The temperature at which a liquid or gas changes state is 

dependent upon the pressure."

The refrigeration cycle begins at the compressor.  Starting the 

compressor creates a low pressure in the suction line which draws 

refrigerant gas (vapor) into the compressor. The compressor then 

"compresses" this refrigerant, raising its pressure and its (heat 

intensity) temperature. 
The refrigerant leaves the compressor through the discharge Line 

as a hot High pressure gas (vapor).  The refrigerant enters the 

condenser coil where it gives up some of its heat. The condenser 

fan moving air across the coil's finned surface facilitates the transfer 

of heat from the refrigerant to the relatively cooler outdoor air.
When a sufficient quantity of heat has been removed from the 

refrigerant gas (vapor), the refrigerant will "condense" (i.e. change 

to a liquid). Once the refrigerant has been condensed (changed) 

to a liquid it is cooled even further by the air that continues to flow 

across the condenser coil. 
The PTAC design determines at exactly what point (in the 

condenser) the change of state (i.e. gas to a liquid) takes place.  

In all cases, however, the refrigerant must be totally condensed 

(changed) to a Liquid before leaving the condenser coil.

The refrigerant leaves the condenser Coil through the liquid line 

as a warm high pressure liquid. It next will pass   through the 

refrigerant drier (if so equipped). It is the function of the drier to 

trap any moisture present in the system, contaminants, and large 

particulate matter.
The liquid refrigerant next enters the metering device.  The 

metering device is a capillary tube. The purpose of the metering 

device is to "meter" (i.e. control or measure) the quantity of 

refrigerant entering the evaporator coil.
In the case of the capillary tube this is accomplished (by design) 

through size (and length) of device, and the pressure difference 

present across the device. 
Since the evaporator coil is under a lower pressure (due to the 

suction created by the compressor) than the liquid line, the liquid 

refrigerant leaves the metering device entering the evaporator coil. 

As it enters the evaporator coil, the larger area and lower pressure 

allows the refrigerant to expand and lower its temperature (heat 

intensity). This expansion is often referred to as "boiling". Since 

the unit's blower is moving indoor air across the finned surface 

of the evaporator coil, the expanding refrigerant absorbs some of 

that heat. This results in a lowering of the indoor air temperature, 

hence the "cooling" effect.
The expansion and absorbing of heat cause the liquid refrigerant 

to evaporate (i.e. change to a gas). Once the refrigerant has been 

evaporated (changed to a gas), it is heated even further by the air 

that continues to flow across the evaporator coil.
The particular system design determines at exactly what point (in 

the evaporator) the change of state (i.e. liquid to a gas) takes place. 

In all cases, however, the refrigerant must be totally evaporated 

(changed) to a gas before leaving the evaporator coil.
The low pressure (suction) created by the compressor causes 

the refrigerant to leave the evaporator through the suction line 

as a cool low pressure vapor. The refrigerant then returns to the 

compressor, where the cycle is repeated.

Sequence of Operation

Liquid 

Line

Suction 

Line

Evaporator 

Coil

Metering 

Device

Refrigerant 

Strainer

Discharge 

Line

Refrigerant Drier

Condenser 

Coil

Compressor

Summary of Contents for WallMaster PE07K

Page 1: ...P2K23 DM 4 03 Standard Unit Seacoast Protected Unit Remote Thermostat Unit Service Manual WallMaster P SERIES Packaged Terminal Air Conditioners Packaged Terminal Heat Pumps...

Page 2: ...4 Overcharged Refrigerant Systems 15 Restricted Refrigerant Systems 18 Capillary Tube Systems 17 Reversing Valve Operation 17 Electrical Circuit And Coil 18 Checking Reversing Valve 18 Touch Test In H...

Page 3: ...all Sleeve Condenser Coil Condenser Shroud Compressor Basepan Control Panel Front Cover Control Door Filters Gasket Gasket The information contained in this manual is intended for use by a qualified s...

Page 4: ...C Seacoast Protection X Seacoast Remote Nominal Heater Size 230V or 265V 0 No Heater 2 2 5 KW 3 3 4 KW 5 5 0 KW Voltage K 230 208V 1Ph 60 Hz R 265V 1Ph 60 Hz UNIT IDENTIFICATION PTAC Serial Number Id...

Page 5: ...3300 13500 INDOOR CFM 250 250 300 300 325 325 350 350 SENSIBLE HEAT RATIO 0 79 0 79 0 76 0 76 0 76 0 76 0 75 0 75 VENT CFM 60 60 60 60 70 70 70 70 GENERAL INFORMATION PE SERIES Model PE07K PE07R PE09K...

Page 6: ...essure liquid It next will pass through the refrigerant drier if so equipped It is the function of the drier to trap any moisture present in the system contaminants and large particulate matter The li...

Page 7: ...only Electrical Rating Tables All 230 208 volt units are equipped with power cords Electric shock hazard Turn off electric power before service or installation All electrical connections and wiring MU...

Page 8: ...s to the desired location 5 Replace the knob when the desired range has been set 6 Replace the control panel EXAMPLE To set a maximum temperature range of approximately 64 to 86 F move the screws to t...

Page 9: ...ed Terminal G should be energized whenever a call for heating or cooling is made Typically a heat cool thermostat designed for use with electric heat systems will meet this requirement Honeywell Therm...

Page 10: ...ype In all cases no matter how simple or complex they are simply a switch or series of switches designed to turn equipment or components ON or OFF at the desired conditions An improperly operating or...

Page 11: ...n the control circuit W using a low range 0 2 0 Amps ammeter After measuring the current draw simply set the heat anticipator to match that value Electronic thermostats do not use a resistance type an...

Page 12: ...ging continues Not enough refrigerant undercharge on the other hand will cause the temperature of the suction gas to increase to the point where it does not provide sufficient cooling for the compress...

Page 13: ...ong enough to establish working pressures in the system 15 to 20 minutes During the cooling cycle you can listen carefully at the exit of the metering device into the evaporator an intermittent hissin...

Page 14: ...ow over the evaporator coil may indicate some of the same symptoms as an overcharged system An over charge can cause the compressor to fail since it would be slugged with liquid refrigerant The charge...

Page 15: ...ith a partial restriction there may be gurgling sounds at the metering device entrance to the evaporator The evaporator in a partial restriction could be partially frosted or have an ice ball close to...

Page 16: ...mall capillary tubes connect each end of the main valve cylinder to the A and B ports of the pilot valve A third capillary is a common return line from these ports to the suction tube on the main valv...

Page 17: ...test the heat relay and the reversing valve relay 3 STANDARDHEATPUMPUNITS Checkforlinevoltage at system switch terminal 7 and thermostat terminal 2 If voltage is not present test the system switch Tes...

Page 18: ...d within a few seconds since the pressures in the system will not have had time to equalize Voltage should be at or above minimum voltage of 197 VAC as specified on the rating plate If less than minim...

Page 19: ...o determine why the compressor failed Many compressor failures are caused by the following conditions 1 Improper air flow over the evaporator 2 Overcharged refrigerant system causing liquid to be retu...

Page 20: ...resistor across terminals When checking a dual capacitor with a capacitor analyzer or ohmmeter both sides must be tested Capacitor Check With Capacitor Analyzer The capacitor analyzer will show wheth...

Page 21: ...hould the thermostat fail any part of this check it should be replaced Some thermostats may have the terminals identified by the letters C H and L Cooling Only Models Cooling Heating Models CONTACTS M...

Page 22: ...e table below Should the fan cycle switch fail any part of this check it should be replaced Fan Speed Switch Continuity Check Remote Models Only Remove and label all wires from the fan speed switch Co...

Page 23: ...e unit to cycle between compressor and electric heat operation Electric Heat Switch Check Out The switch may be checked out with an ohmmeter Remove and label the three wires from the switch Terminal 2...

Page 24: ...ms Allow all items to dry thoroughly before reinstalling them 3 Periodically at least yearly or bi yearly inspect all control components both electrical and mechanical as well as the power supply Use...

Page 25: ...Conditions High Load Conditions Low Air Flow Across High Air Flow Across Refrigerant System Low Air Flow Across Indoor Coil Indoor Coil Restriction Outdoor Coil Refrigerant System Reversing Valve not...

Page 26: ...em Restriction Reversing Valve not Fully Seated Low Airflow Across Indoor Coil Low Airflow Across Outdoor Coil Outdoor Ambient Too High for Operation in Heating Refrigerant System Restriction Outdoor...

Page 27: ...Reversing Valve Stuck Replace the Reversing Valve Replace the Solenoid Coil NO Is the Solenoid Coil Good Is Line Voltage Present at the Solenoid Valve Is the Selector Switch Set for Heat NO SYSTEM CO...

Page 28: ...28 Wiring Diagram PTAC Models PE 07 09 12 15 KOOSA 1 Wiring Diagram PTAC Models PH 07 09 12 15 K 2 3 5 SA 1...

Page 29: ...29 Wiring Diagram PTAC Models PH 07 09 12 15 KOOSA 1 Wiring Diagram PTAC Models PE 07 09 12 15 K 2 3 5 SA 1...

Page 30: ...30 Wiring Diagram PTAC Models PH 07 09 12 15 K 2 3 5 RA 1 Wiring Diagram PTAC Models PE 07 09 12 15 K 2 3 5 RA 1...

Page 31: ...31 Wiring Diagram PTAC Models PE 07 09 12 15 KOORA 1 Wiring Diagram PTAC Models PE 07 09 12 15 R00SA 1...

Page 32: ...32 Wiring Diagram PTAC Models PE 07 09 12 15 R 2 3 5 SA 1 Wiring Diagram PTAC Models PH 07 09 12 15 R 2 3 5 SA 1...

Page 33: ...33 Wiring Diagram PTAC Models PE 07 09 12 15 R 2 3 5 RA 1 Wiring Diagram PTAC Models PH 07 09 12 15 R 2 3 5 RA 1...

Page 34: ...OOTH WIRE POWER F A N 5 H E R M c 3 4 1 C 2 L 3 H 1 S C R H 1 L 3 C 2 9 5 L 6 COM H L1 L2 3 1 8 2 7 4 1 3 2 RED BLACK FAN HEATER SOLENOID CAPACITOR HOT START SENSOR BROWN RED BROWN YELLOW TO INNERWALL...

Page 35: ...LD SUPPLIED 24 WIRING HARNESS POWER TERMINAL L1 TERMINAL L2 TO UNIT SWITCH SUPPLIED BLACK WIRE SUPPLIED WHITE WIRE TO UNIT SWITCH 24V 240V 208V COM H E R M YELLOW RED FAN 2 1 BLACK RED MOTOR TERM BOAR...

Page 36: ...E WIRE FIELD SUPPLIED 24 VOLT WIRES WIRING HARNESS Existing Black Line White Line Supplied Transformer 277V To Unit COM To Fuse Terminal H E R M YELLOW RED FAN 2 1 BLACK RED MOTOR TERM BOARD PURPLE YE...

Page 37: ...OLT WIRES FIELD SUPPLIED 24 WIRING HARNESS RIBBED WIRE SMOOTH WIRE POWER CORD To Unit Transformer 230V COM F A N H E R M c S C R H 1 L 3 C 2 4 L 3 COM H L1 L2 1 2 COMP 1 3 2 RED BLACK FAN CAPACITOR BR...

Page 38: ...WIRES FIELD SUPPLIED 24 WIRING HARNESS To Fuse Terminal White Line Supplied Black Line F A N 5 H E R M c 3 4 1 C 2 L 3 H 1 S C R H 1 L 3 C 2 9 5 L 6 COM H L1 L2 3 1 8 2 7 4 1 3 2 RED BLACK FAN HEATER...

Page 39: ...sformer WHITE WIRE BLACK WIRE SUPPLIED Existing 277V COM 3 2 1 3 R Y W B G 3 1 2 4 1 4 3 1 1 3 6 2 2 4 4 2 F A N H E R M 3 5 4 1 L 3 H 1 C 2 S R C COM 24V COM 277V C GREEN YELLOW YELLOW RED BROWN YELL...

Page 40: ...4 03 FRIEDRICH AIR CONDITIONING CO Post Office Box 1540 San Antonio Texas 78295 1540 4200 N Pan Am Expressway San Antonio Texas 78218 5212 210 357 4400 FAX 210 357 4480 www friedrich com Printed in t...

Reviews: