background image

©2002 Fairchild Semiconductor Corporation

Application Note 7502 Rev. A1

FIGURE 4.

IDEALIZED POWER MOSFET WAVEFORMS

FIGURE 5.

STEP-VOLTAGE FORCING FUNCTION

Power MOSFET devices are highly capacitive in nature;
hence, simple capacitor responses to the forcing functions
offer a good vehicle for comparison. The advantageous
choice is immediately obvious: Figure 6. Voltage/time
responses dominated by capacitance are straight lines
(when constant current is used). The slope of these lines is
proportional to current and inversely proportional to capaci-
tance. Analytically, then, constant current is most conve-
nient. It is quite another matter, however, to build a
bidirectional current drive that is accurate across the many
decades of both current and time required to establish
experimental verification. 

Six States

To completely characterize power MOSFET switching wave-
forms, the six states that a device assumes, Figure 6, must
be addressed:

The term saturated is taken to mean a constant low-voltage drain-source

condition.

FIGURE 6.

STEP CURRENT FORCING FUNCTION

Equivalent Circuit

The lumped-parameter model of Figure 3, with the cascode-
connected JFET, can now be reduced to the linear equiva-
lent circuit of Figure 7, and the six device states investigated
from full off to full on.

FIGURE 7.

POWER MOSFET EQUIVALENT CIRCUIT

State 1: MOS Off, JFET Off

In a power-MOSFET device, no drain current will flow until
the device’s gate threshold voltage, V

gs(TH)

, is reached. Dur-

ing this time, the gate’s current drive is only charging the
gate source capacitance. More accurately, I

G

 is charging

C

ISS

 (C

ISS

 = C

GS

 + C

GD

, C

DS

 shorted), the capacitance

designation published by the industry.

The current generators, g

M

V

G

 and g

MJ

V

X

 are open circuits

for zero drain current, and R

L

 is presumed to be so low as to

represent a short circuit (generally true for practical applica-
tions). This is academic however since C

GS

 is very much

larger that C

X

. The time to reach threshold, then, is simply:

STATE

MOS

JFET

Turn-on 1

Off

Off

Turn-on 2

Active

Active

Turn-on 3

Active

Saturated

Turn-off 4

Saturated

Saturated

Turn-off 5

Active

Saturated

Turn-off 6

Active

Active

1

2

3

4

5

6

STATES

I

G

 = CONSTANT

GATE VOLTAGE

DRAIN

VOLTAGE

V

G(SAT)

V

D(SAT)

V

DD

V

GS

VO

L

T

AG

E

V

T

V

DK

TIME

-V

G

i(

t)

v(

t)

t

t

-I

PK

 = V

G

/R

O

I

PK

 = V

G

/R

O

V

G

C

v(t)

i(t)

TURN ON
v(t) = V

G

 (1 - e)

i(t) = V

G

 e

R

O

TURN OFF

v(t) = V

G

 e

i(t) = - V

G

 e

R

O

-t/R

O

C

-t/R

O

C

-t/R

O

C

-t/R

O

C

R

O

LEGEND

V

GS

- Gate Voltage

C

DS

- Drain Source Capacitance

V

X

- JFET Driving Voltage

g

M

- MOSFET Transconductance

V

D

- Drain Voltage

g

MJ

- JFET Transconductance

C

GS

- Gate Source

Capacitance

R

L

- Drain Load Resistance

C

X

- MOSFET Feedback 

Capacitance

I

G

- Constant Current Amplitude

T

1

 =

C

ISS

 

V

gs(TH)

I

G

I

G

-I

G

i(t)

T

T

t

t

-I

G

I

G

i(

t)

v(t

)

v(t)

C

-VG = 

C

I

G

T

TURN ON

v(t) =

I

G

t

C

i(t) = I

G

, 0 < t < T

TURN OFF

v(t) = 2V

G

-I

G

t

C

i(t) = I

G

, T < t < 2T

GATE

C

DS

SOURCE

DRAIN

C

X

V

GS

I

G

g

MJ

 V

X

R

L

C

GS

g

M

 V

G

V

D

V

X

Application Note 7502

Summary of Contents for Power MOSFET AN-7502

Page 1: ...nds Device Models The keystone of an understanding of power MOSFET switching performance is the realization that the active device is bimodal and must be described using a model that accounts for the...

Page 2: ...tate 1 MOS Off JFET Off In a power MOSFET device no drain current will flow until the device s gate threshold voltage Vgs TH is reached Dur ing this time the gate s current drive is only charging the...

Page 3: ...t5 VDK VD SAT Cx lG State 4 MOS Saturated JFET Saturated Turn Off In this state in addition to gMJVX being shorted the gMVG cur rent generator is shorted and IG is occupied with charging CX and CGS in...

Page 4: ...switching time versus 1 RO to be of the same form as those obtained for a step current drive This is exactly the case as Figure 10 is merely a vari ation of Figure 8 Using the relationships of Table 1...

Page 5: ...complexity FIGURE 10 CONSTANT GATE VOLTAGE SWITCHING TIME Using the Characterization Curve Figure 9 To estimate the switching times for an RFM15N15 power MOSFET under the conditions VG 10V VDD 75V RO...

Page 6: ...and the 90 level by another Device comparisons based on the classical switching definition can be very misleading Appendix A Analysis for Resistive Step Voltage Inputs Step Voltage Gate Drive To obtai...

Page 7: ...time The equivalent circuit then predicts State 4 Mos Saturated JFET Saturated Turn off Both equivalent circuit generators are short circuits and the gate drive is discharging CX in parallel with CGS...

Page 8: ...on Source Gate Drive Figure B 3 FIGURE B 3 COMMON SOURCE GATE DRIVE CIRCUIT Turn On RO RD drain to ground capacitance of driving device adds to CGS of driven MOSFET Turn Off RO rDS ON of driving MOSFE...

Page 9: ...ife support device or system or to affect its safety or effectiveness PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Preliminary...

Reviews: