background image

©2002 Fairchild Semiconductor Corporation

Application Note 7502 Rev. A1

FIGURE 9. NORMALIZED RFM15N15 SWITCHING WAVE-

FORMS FOR CANSTANT GATE-CURRENT DRIVE.

Step-Voltage Gate Drive

The majority of power MOSFET applications employ a step
gate-voltage input with a finite source resistance R

O

. Often

R

O

 for turn-on is not the same as R

O

 for turn-off. How can

switching times for these situations be estimated using the
switching characterization curves just described? The analy-

sis for resistive step voltage inputs, which is complex
because the gate current is no longer constrained to be con-
stant, but is a function of device gate-voltage response, is
covered in Appendix A. (A second, shorter appendix, B, has
been added to illustrate the estimation of R

O

 for some practi-

cal gate drive circuits.) Table 1 summarizes the common
switching equations, and indicates the appropriate 1

G

 to be

used in each state for relating step voltage drives to the char-
acterization curves. 

Experimental Verification

Since the switching equations for step currents and voltages
differ only by gate-current magnitudes for the same device
type, one would expect a plot of switching time versus 1/R

O

to be of the same form as those obtained for a step current
drive. This is exactly the case, as Figure 10 is merely a vari-
ation of Figure 8. Using the relationships of Table 1, the
observed differences between Figures 7 and 9 can be pin-
pointed. The two sets of experimental curves confirm that,
on the basis of the short-circuit drive current V

G

/R

O

 equal-

ling the constant I

G

, t

D(on)

, t

R

, t

D(off)

, and t

F

 will all be

longer, as predicted by the ratios of the gate drive currents of
Table 1. Notice also that t

R

, t

F

 switching symmetry is dis-

rupted by the use of a step voltage with source resistance
R

O

. For states 2 and 6 the time ratio is: 

100

75

50

25

0

20I

T

/I

G

40I

T

/I

G

60I

T

/I

G

80I

T

/I

G

RFM15N15
I

T

 = 1mA

V

G

 = 10 VOLTS

R

L

 = V

DSS

/I

D(RMS)

% RA

T

ES V

DSS

TIME - microseconds

TABLE 1.

COMMON SWITCHING EQUATIONS

T

U
R

O
N

CONSTANT CURRENT

STATE 1: MOS OFF, JFET OFF

CONSTANT VOLTAGE

t =

C

ISS

 V

GS(TH)

t = R

O

 C

ISS

 In

[1]

I

G

[1 - V

GS(TH)

/V

G

]

I

G

 = I

T

STATE 2: ACTIVE, ACTIVE

I

G

 = (V

G

 - V

GS(TH)

)/R

O

t =

[V

DD

 - V

DK

] [C

GS

 + C

x

 (1 + g

M

/g

MJ

)]

g

M

R

L

I

G

I

G

 = I

T

STATE 3: ACTIVE, SATURATED

I

G

 = (V

G

 - V

G(SAT)

)/R

O

t =

(V

DK

 - V

D(SAT)

)C

X

I

G

T

U
R

O

F
F

I

G

 = I

T

STATE 4: SATURATED, SATURATED

I

G

 = -V

G

/R

O

t =

(C

GS

 + C

X

)(V

G

 - V

G(SAT)

)

t = R

O

(C

GS

 + C

X

) In (V

G

/V

G(SAT)

)

I

G

I

G

 = I

T

STATE 5: ACTIVE, SATURATED

I

G

 = (V

G

 - V

G(SAT)

)/R

O

t =

(V

DK

 - V

D(SAT)

)C

X

I

G

I

G

 = I

T

STATE 6: ACTIVE, ACTIVE

I

G

 = (V

G

 - V

G(SAT)

)/R

O

t =

[V

DD

 - V

DK

] [C

GS

 + C

X

 (1 + g

M

/g

MJ

)]

g

M

R

L

I

G

Application Note 7502

Summary of Contents for Power MOSFET AN-7502

Page 1: ...nds Device Models The keystone of an understanding of power MOSFET switching performance is the realization that the active device is bimodal and must be described using a model that accounts for the...

Page 2: ...tate 1 MOS Off JFET Off In a power MOSFET device no drain current will flow until the device s gate threshold voltage Vgs TH is reached Dur ing this time the gate s current drive is only charging the...

Page 3: ...t5 VDK VD SAT Cx lG State 4 MOS Saturated JFET Saturated Turn Off In this state in addition to gMJVX being shorted the gMVG cur rent generator is shorted and IG is occupied with charging CX and CGS in...

Page 4: ...switching time versus 1 RO to be of the same form as those obtained for a step current drive This is exactly the case as Figure 10 is merely a vari ation of Figure 8 Using the relationships of Table 1...

Page 5: ...complexity FIGURE 10 CONSTANT GATE VOLTAGE SWITCHING TIME Using the Characterization Curve Figure 9 To estimate the switching times for an RFM15N15 power MOSFET under the conditions VG 10V VDD 75V RO...

Page 6: ...and the 90 level by another Device comparisons based on the classical switching definition can be very misleading Appendix A Analysis for Resistive Step Voltage Inputs Step Voltage Gate Drive To obtai...

Page 7: ...time The equivalent circuit then predicts State 4 Mos Saturated JFET Saturated Turn off Both equivalent circuit generators are short circuits and the gate drive is discharging CX in parallel with CGS...

Page 8: ...on Source Gate Drive Figure B 3 FIGURE B 3 COMMON SOURCE GATE DRIVE CIRCUIT Turn On RO RD drain to ground capacitance of driving device adds to CGS of driven MOSFET Turn Off RO rDS ON of driving MOSFE...

Page 9: ...ife support device or system or to affect its safety or effectiveness PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Preliminary...

Reviews: