Fairchild FSB43004A User Manual Download Page 17

AN-9111 

APPLICATION NOTE 

© 2015 Fairchild Semiconductor Corporation 

 

www.fairchildsemi.com 

Rev. 1.1  

•  6/26/15 

16 

as  the  input  signals.  It  is  also  recommended  that  the  de-
coupling capacitors be placed at both the MCU and Motion-
SPM  ends  of  the  VFO  and  the  signal  line  as  close  as 
possible  to  each  device.  The  RC  coupling  at  each  input 
(parts  shown  dotted  in  Figure  17  might  change  depending 
on the PWM control scheme used in the application and the 
wiring impedance of the application’s PCB layout. 

5V-Line

IN

(UH)

, IN

(VH)

, IN

(WH)

IN

(UL)

, IN

(VL)

, IN

(WL)

VF

COM

R

PF

=10k

Ω

C

PF

=1nF

Motion SPM 45L

MCU

Gate 

Driver

Level-Shift 

Circuit

Typ. 5 k

Input 

Noise 

Filter

Input 

Noise 

Filter

Gate 

Driver

Typ. 5 k

 

Figure 17. Recommended CPU I/O Interface Circuit 

The  µMini  DIP  family  of  Motion-SPM  products  employs 
active-HIGH  input  logic.  This  removes  the  sequence 
restriction  between  the  control  supply  and  the  input  signal 
during  startup  or  shutdown  operation.  Therefore,  it  makes 
the  system  fail-safe.  In  addition,  pull-down  resistors  are 
built-in  to  each  input  circuit.  External  pull-down  resistors 
are  not  needed,  reducing  external  components.  The  input 
noise filter inside the Motion-SPM product suppresses short 
pulse  noise  and  prevents  the  MOSFET  from  malfunction 
and excessive switching loss. Furthermore, by lowering the 
turn-on  and  turn-off  threshold  voltages  of  the  input  signal, 
as shown in 

Error!  Reference  source  not  found.

, a direct 

connection to 3.3 V-class MCU or DSP is possible. 

Table 10. 

Input Threshold Voltage Ratings 
(V

DD

=15 V, T

J

=25°C) 

Symbol 

Item 

Condition 

Min.  Max.  Unit 

V

IN(ON)

 

Turn-On 

Threshold 

Voltage 

IN

(UH)

, IN

(VH)

IN

(WH)

-COM 

 

2.6 

V

IN(OFF)

 

Turn-Off 

Threshold 

Voltage 

IN

(UL)

, IN

(VL)

IN

(WL)

-COM 

0.8 

 

6.4.  Bootstrap Circuit Design 

6.4.1.

 

Operation of Bootstrap Circuit 

The  V

BS

  voltage,  which  is  the  voltage  difference  between 

V

B(U,V,W)

  and  V

S(U,V,W)

,  provides  the  supply  to  the  HVIC 

within the motion SPM

®

 45 LV series. This supply must be 

in the range of 13.0 V~18.5 V to ensure that the HVIC can 
fully drive the  high-side MOSFET. The  SPM 45 LV series 
includes  an  under-voltage  lock  out  protection  function  for 
the V

BS

 to ensure that the HVIC does not drive the high-side 

MOSFET,  if  the  V

BS

  voltage  drops  below  a  specified 

voltage  (refer  to  the  datasheet).  This  function  prevents  the 
MOSFET from operating in a high dissipation mode. 

 

There  are  a  number  of  ways  in  which  the  V

BS

  floating 

supply  can  be  generated.  One  of  them  is  the  bootstrap 

method described here (refer to Figure 18). This method has 
the  advantage  of  being  simples  and  inexpensive.  However, 
the duty cycle and on-time are limited by the requirement to 
refresh  the  charge  in  the  bootstrap  capacitor. The  bootstrap 
to  ground  (either  through  the  low-side  or  the  load),  the 
bootstrap  capacitor  (C

BS

)  is  charged  through  the  bootstrap 

diode (D

BS

) and the resistor (R

BS

) from the V

CC

 supply.  

V

S

HVIC

LVIC

V

DC

V

CC(L)

V

B

V

CC(H)

V

CC

IN

(L)

C

BS

C

VCC

Motion-SPM

TM

  

D

BS

COM

V

CC

COM

H

O

H

O

V

SL

COM

V

CC

V

BS

IN

(H)

IN

(H)

IN

(H)

OFF

ON

V

B

R

BS

 

Figure 18. 

Current path of Bootstrap Circuit 

6.4.2.

 

Selection of Bootstrap Capacitor 
Considering Initial Charging 

Adequate on-time of the low-side MOSFET to fully charge 
the  bootstrap  capacitor  is  required  for  initial  bootstrap 
charging. The initial charging time (t

charge

) can be calculated 

by: 

t

charge

   

  

 R

  

 

 
 

  ln

V

  

V

  

 V

   min 

 V

F

 V

  

 

 

where: 

V

F

 = Forward voltage drop across the bootstrap diode; 

V

BS(min)

 =The minimum value of the bootstrap capacitor; 

V

LS

  =  Voltage  drop  across  the  low-side  MOSFET  or  load; 

and 

  

  

 Duty ratio of PWM 

When the  bootstrap capacitor is charged initially; V

CC

 drop 

voltage  is  generated  based  on  initial  charging  method,  V

CC

 

line  SMPS  output  current,  V

CC

  source  capacitance,  and 

bootstrap  capacitance.  If  V

CC

  drop  voltage  reaches  UV

CCD

 

level,  the  low  side  is  shut  down  and  a  fault  signal  is 
activated.  

To  avoid  this  malfunction,  the  related  parameter  and  initial 
charging  method  should  be  considered.  To  reduce  V

CC

 

voltage drop at initial charging, a large V

CC

 source capacitor 

and  selection  of  optimized  low-side  turn-on  method  are 
recommended.  Adequate  on-time  duration  of  the  low-side 
MOSFET to fully charge the bootstrap capacitor is initially 
required before normal operation of PWM starts.  

Figure  19  shows  an  example  of  initial  bootstrap  charging 
sequence. Once V

CC

 establishes, V

BS

 needs to be charged by 

turning  on  the  low-side  MOSFETs.  PWM  signals  are 
typically generated by an interrupt triggered by a timer with 
a fixed interval, based on the switching carrier frequency.  

Summary of Contents for FSB43004A

Page 1: ...by ON Semiconductor Typical parameters which may be provided in ON Semiconductor data sheets and or specifications can and do vary in different applications and actual performance may vary over time All operating parameters including Typicals must be validated for each customer application by customer s technical experts ON Semiconductor does not convey any license under its patent rights nor the ...

Page 2: ... Outline 7 3 4 Marking Specification 8 4 Product Synopsis 9 4 2 Electrical Characteristic TJ 25 o C unless otherwise specified 10 4 3 Recommended Operating Conditions 12 4 4 Mechanical Characteristics 12 5 Operation Sequence for Protections 13 5 1 Under Voltage Lockout Protection 13 6 Key Parameter Design Guidance 14 6 1 Selection of Shunt resistor 14 6 2 Fault Output Circuit 15 6 3 Circuit of Inp...

Page 3: ...T based power module has much better ruggedness and a larger Safe Operation Area SOA than MOSFET based module or Silicon On Insulator modules The FRFET based power module has a big advantage in light load efficiency because the voltage drop across the transistor decreases linearly as current decrease Some applications require continuous operation at light load except short transients and improving...

Page 4: ...Line up Table 1 shows the basic line up Online loss temperature simulation tool Motion Control Design Tool Motion Control Design Tool is recommended to find out the right SPM product for the desired application Table 1 Product Line up Target Application Fairchild Device MOSFET Rating Motor Rating Error Reference source not found Isolation Voltage Small Power Inverter Power Tool FSB44104A 40 A 40 V...

Page 5: ... the accomplishment of optimization package size while maintaining outstanding heat dissipation characteristics without compromising the isolation rating In the SPM package technology was developed in which bare ceramic with good heat dissipation characteristics is attached directly to the lead frame This technology already applied in SPM but was improved through new adhesion methods This made it ...

Page 6: ... NV Negative DC Link Input 7 NU Negative DC Link Input 8 VFO Fault Output 9 IN UL PWM Input for Low Side U Phase MOSFET Drive 10 IN VL PWM Input for Low Side V Phase MOSFET Drive 11 IN WL PWM Input for Low Side W Phase MOSFET Drive 12 COM Common Supply Ground 13 VCC Common Supply Voltage for IC and Low side MOSFET Drive 14 IN UH PWM Input for High Side U Phase MOSFET Drive 15 IN VH PWM Input for H...

Page 7: ... built in MOSFETs They are activated by voltage input signals The terminals are internally connected to a Schmitt trigger circuit composed of 5 V class CMOS The signal logic of these pins is active HIGH The MOSFETs associated with each of these pins are turn on when a sufficient logic voltage is applied to these pins The wiring of each input should be as short as possible to protect the Motion SPM...

Page 8: ...AN 9111 APPLICATION NOTE 2015 Fairchild Semiconductor Corporation www fairchildsemi com Rev 1 1 6 26 15 7 3 3 Package Outline ...

Page 9: ...AN 9111 APPLICATION NOTE 2015 Fairchild Semiconductor Corporation www fairchildsemi com Rev 1 1 6 26 15 8 3 4 Marking Specification ...

Page 10: ... calculation value or design factor Table 4 Control Part Symbol Parameter Conditions Rating Unit VCC Control Supply Voltage Applied between VCC COM 20 V VBS High Side Control Bias Voltage Applied between VB U VS U VB V VS V VB W VS W 20 V VIN Input Signal Voltage Applied between IN UH IN VH IN WH IN UL IN VL IN WL COM 0 3 VCC 0 3 V VFO Fault Output Supply Voltage Applied between VFO COM 0 3 VCC 0 ...

Page 11: ...BS 15 V VIN 5 V ID 40 A 3 0 4 1 mΩ VSD Source Drain Diode Forward Voltage VCC VBS 15 V VIN 0 V ISD 40 A 0 8 1 1 V HS tON Switching Times VPN 20 V VCC VBS 15 V ID 40 A VIN 0 V 5 V Inductive Load See Figure 7 1200 µs tC ON 1140 tOFF 1700 tC OFF 500 trr 70 Irr 5 LS tON 1370 tC ON 1000 tOFF 1850 tC OFF 600 trr 75 Irr 4 IDSS Drain Source Leakage Current VDS VDSS 250 µA Note 4 BVDSS is the absolute maxi...

Page 12: ... Control Part Symbol Parameter Conditions Min Typ Max Unit IQCC Quiescent VCC Supply Current VCC H 15 V IN UH VH WH 0 V VCC H COM 2 75 mA IQBS Quiescent VBS Supply Current VBS 15 V IN UH VH WH 0 V VB U VS U VB V VS V VB W VS W 0 3 mA VFOH Fault Output Voltage VCC 15 V VSC 0 V VFO Circuit 4 7 kΩ to 5 V Pull up 4 5 V VFOL VCC 15 V VSC 1 V VFO Circuit 4 7 kΩ to 5 V Pull up 0 5 UVCCD Supply Circuit Un...

Page 13: ... WH COM VCC L COM 13 5 15 0 16 5 VBS High Side Bias Voltage Applied between VB U VS U VB V VS V VB W VS W 13 0 15 0 18 5 V dVCC dt dVBS dt Control Supply Variation 1 1 V µs VSEN Voltage for Current Sensing Applied between NU NV NW COM Including Surge Voltage 4 4 V 4 4 Mechanical Characteristics Figure 9 Flatness Measurement Position Parameter Conditions Value Unit Min Typ Max Device Flatness See F...

Page 14: ...N and carrying current The HVIC has an under voltage lockout function to protect the high side MOSFET from insufficient gate driving voltage A timing chart for this protection is shown in Figure 11 A fault out FO alarm is not given for low HVIC bias conditions Input Signal Output Current Fault Output Signal Control Supply Voltage RESET UVBSR Protection Circuit State SET RESET UVBSD Filtering Resta...

Page 15: ...0 03 V max 0 033 V Tolerance 10 depends on system Shunt resistance ISC max VSC max RSHUNT min RSHUNT min VSC max ISC max If the deviation of the shunt resistor is limited below 1 RSHUNT typ RSHUNT min 0 99 RSHUNT max RSHUNT typ 1 01 Actual SC trip current level becomes ISC typ VSC typ RSHUNT min ISC min VSC min RSHUNT max Inverter output power POUT where VO LL Inverter output line to line voltage ...

Page 16: ...SC max 60 A and VREF level is 2 5 V To prevent malfunction it is recommended that an RC filter be inserted at the CSC pin To shut down MOSFETs within 3 µs when over current situation occurs a time constant of 1 5 2 µs is recommended 6 2 Fault Output Circuit VFO terminal is an open drain type it should be pulled up via a pull up resistor The resistor must satisfy the above specifications 0 0 0 2 0 ...

Page 17: ...the HVIC does not drive the high side MOSFET if the VBS voltage drops below a specified voltage refer to the datasheet This function prevents the MOSFET from operating in a high dissipation mode There are a number of ways in which the VBS floating supply can be generated One of them is the bootstrap method described here refer to Figure 18 This method has the advantage of being simples and inexpen...

Page 18: ...21 and Figure 22 shows waveform initial bootstrap capacitor charging voltage and current Figure 21 Each Part Initial Operating Waveform of Bootstrap Circuit Conditions VDC 20 V VCC 15 V CBS 22 μF LS MOSFET Turn on Duty 200 μsec Figure 22 Each Part Operating Waveform of Bootstrap Circuit Conditions VDC 20 V VCC 15 V CBS 22 μF LS MOSFET Full Turn on 6 4 3 Selection of Bootstrap Capacitor Considering...

Page 19: ...otstrap capacitor If the minimum ON pulse width of low side MOSFET or the minimum OFF pulse width of high side MOSFET is tO the bootstrap capacitor must be charged to increase the voltage by ΔV during this period Therefore the value of bootstrap resistance can be calculated by BS ΔV BS o BS CC BS C t V V R where VCC Supply voltage VBS Minimum bootstrap voltage tO Minimum ON pulse width CBS Bootstr...

Page 20: ...CBS CSP15 5V RPF Motor VDC CDCS Gating UH Gating VH Gating WL Gating VL Gating UL CPF M C U RSH Current Sensing RS RS RS RS RS RS RBS DBS RBS DBS LVIC VFO VCC IN UL IN VL IN WL COM OUT UL OUT VL OUT WL NW 5 U 4 V 3 W 2 P 1 21 VS W 22 VB W 19 VS V 20 VB V 8 VFO 11 IN WL 10 IN VL 9 IN UL 12 COM HVIC VB W COM VS W 16 IN WH 15 IN VH 17 VS U 18 VB U 14 IN UH OUT WH NV 6 NU 7 VB V VS V VB U VS U VCC IN ...

Page 21: ...ND and Power GND as short as possible Place sunbber capacitor between P and N and closely to terminals Isolation distance between high voltage block and low voltage block should be kept The V IN RC filter should be placed to SPM as close as possible Capacitor should be locate closely to terminals of SPM Wiring between N U N V N W and shunt resistor should be as short as possible C SC wiring should...

Page 22: ...AN 9111 APPLICATION NOTE 2015 Fairchild Semiconductor Corporation www fairchildsemi com Rev 1 1 6 26 15 21 Packing Information Figure 26 Packing Information ...

Page 23: ...OLICY FAIR HI D PRODU T ARE NOT AUTHORIZED FOR U E A RITI A OMPONENT IN IFE UPPORT DEVI E OR Y TEM WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION As used herein 1 Life support devices or systems are devices or systems which a are intended for surgical implant into the body or b support or sustain life or c whose failure to perform when properly used in...

Page 24: ... the rights of others ON Semiconductor products are not designed intended or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body Should Buyer purchase or use ON Semiconductor products for any such unintended ...

Reviews: