Ericsson MASTR III 344A3168P1 Maintenance Manual Download Page 4

 Several general rules can be applied to estimate charge

time of a lead acid battery system. There is almost a 100% con-
version of electrical energy to stored chemical energy for the
first 80% of battery capacity. If usable capacity is defined to be
at least 80 % of full charge, then the time to reach usable ca-
pacity is: T = 0.8 x AH/C, where T is in hours, AH is in amp-
hours, and C is the average charge rate in amps. To charge the
remaining 20 % to a full charge takes longer because the elec-
trical energy is no longer close to 100 % conversion to stored
chemical energy. The time to a full charge can be estimated as,
T = 1.1 x AH/C, where again T is in hours, AH is in amp-
hours, and C is the average charge rate in amps. Using these
estimates for a ten amp charger, a standard 55 Amp-Hour auto-
mobile battery and a gel cell system that uses four 25 Amp-
Hour batteries in parallel would recharge in the following
times:

Estimates can be provided for air time for a MII/MIII sta-

tion. Assuming a worst case scenario of a 100% transmit duty
cycle, the station air time with a 55 Amp-Hour automobile bat-
tery would be approximately one hour and considerably longer
for a smaller transmit duty cycle. With a four-in-parallel 25
Amp-Hour gel cell system, the station air time for a 100%
transmit duty cycle would be approximately three hours with
again a correspondingly longer air time for a smaller transmit
duty cycle.

MAIN CHARGING CIRCUITRY

Power to the charging circuitry is provided from a 120 Vac,

60 Hz (P1) or 230 Vac/50 Hz (P2) line source connected to the
main power cord (W801). Input power is passed through fuse
F1 (and F2 for P2), which limits input current to 5 amps, and
past varistor VR1. VR1 is a voltage transient surge protector
which clamps the line at approximately 150 Vac (P1) or 275
Vac (P2). This protects the internal circuitry from potentially
harmful line voltage surges.

Line voltage is then applied to transformers T1 and T2

which in parallel step the line voltage down to approxi-
mately 38 Vac. This voltage is then applied to rectifiers D1
and D2 as well as filter capacitors C1, C2, and C3. After rec-
tification and filtering, the unregulated DC voltage is ap-
proximately 20 Vdc.

Charging current then flows through the linear regulator

stage on its way to the battery. The linear regulator is com-
posed of two basic groups. These groups are the series pass
regulator group and the series pass control group.

The series pass regulator group consists of Q1, Q2, Q3,

R1, R2, and R3. In order to control the output voltage of the
charger, the series pass transistors are operated as variable
resistors. If the load on the charger is increased, causing a
drop in the output voltage, the resistance of the series pass
transistors is automatically decreased. With a decrease in se-
ries pass resistance, less voltage is dropped across the tran-
sistors thus increasing the output voltage back to the desired
value.

This implementation has one major drawback, a major

percentage of the total power drawn by the charger is dissi-
pated across the series pass transistors. In order to more ef-
fectively handle this dissipation, three transistors are used.
Resistor R1, R2, and R3 provide negative feedback to the
base of the appropriate transistor preventing unequal current
flow and unequal power dissipation.

The series pass control circuitry is comprised of U3, Q4

and their associated bias resistors and decoupling capacitors.
U3 continuously monitors the output voltage being devel-
oped by the interaction between the load and series pass
transistors. When more ouput voltage is required to maintain
regulation, U3 increases drive to transistor Q4. Q4 provides
the amount of series pass transistor base drive necessary to
decrease their resistance and boost the output voltage back
up to the desired value.

This continuous interaction between the control circuitry

and series pass state forms a closed loop control group
which provides the regulated output voltage to the battery.
Potentiometer R12 varies the amount of voltage feedback in
the control loop thus allowing precise adjustment of the out-
put voltage at which regulation is maintained.

OVERCURRENT PROTECTION

Overcurrent protection is provided via a current foldback

scheme. Resistors R4, R5, and R6 form a current sensing
element. The amount of voltage developed across these re-
sistors is directly proportional to the amount of current flow-
ing through them. This sense voltage is applied to the
regulator control integrated circuit, U3, by means of R9,
R10, and R50. As the current through these sense resistors
increases above approximately 10.5 amps, the sense voltage

and output current to decrease. This current foldback ap-
proach for overcurrent protection decreases the amount of
power dissipated across the series pass transistors during a
faulted condition. The maximum allowable short circuit cur-
rent is less than 3 amps.

INPUT OVERVOLTAGE PROTECTION

Overvoltage protection circuitry is provided to protect

the charger from abnormally high AC line voltages. These
voltages could cause premature failure of the series pass
transistors due to excessive power dissipation. When the line
voltage exceeds the limits specified for normal operation, the
charger senses an abnormal condition and reverts to the
SHUTDOWN mode. The charging current to the battery is
cut off by disabling the regulator control integrated circuit,
U3.

AC line voltage is applied to the input of transformer T3

which then steps down the voltage. This voltage is then recti-
fied and filtered into a DC voltage by D10 and C18. Resistor
R27 sets the response time of the filter to decreasing line
voltages. The resultant DC voltage is directly proportional to
the value of AC line voltage being seen by the charging cir-
cuitry. The DC voltage is then divided by the series combi-
nation of R28, R29, and R30. Potentiometer R29 is used to
adjust for transformer winding ratio tolerances from unit to
unit and is factory set. Capacitor C14 provides addition fil-
tering of the line sense voltage.

The same sense voltage signal provides information for

both the overvoltage and undervoltage sensing circuitry.
U8A provides current buffering to eliminate degradation of
the signal. This buffered signal is then applied to the over-
voltage comparator U7B. When a line overvoltage condition
is sensed, the output of U7B, normally a high impedance,
becomes a very low impedance. This low impedance re-
moves base drive to transistor Q7. When Q7 loses base drive
it turns off allowing the shutdown pin of U3 to go high and
disabling drive to the series pass transistors. This effectively
turns off all charging current to the battery.

Figure 1 - 344A3168 Charger

With the four-in-parallel gel cell battery system, if one gel
cell becomes defective before the other three, the cus-
tomer can run with only three gel cells in parallel (with re-
duced air time, of course). It is not advisable to run with
only two gel cells in parallel because of excessive charge
current from the charger which would damage the gel
cells. It is good practice when one gel cell battery be-
comes defective to replace all four gel cell batteries be-
cause of uneven charge and discharge characteristics of
new versus old gel cells. For that same reason it is also ad-
visable not to mix different brands of gel cells.

NOTE

Qty.

Type

Usable Capacity

Full Capacity

1

55 Amp-Hour Auto Battery

4.4 Hours

6.0 Hours

4

25 Amp-Hour Gel Cell Batteries

8.0 Hours

11.0 Hours

Potentiometer R29 is specifically adjusted per internal
factory specs to set the proper trip voltages to send the
charger into the SHUTDOWN mode if the limits are ex-
ceeded. With the line voltage and the line frequency set
at nominal values, R29 is adjusted for 3.24 

±

0.02 V(@

230 Vac 50Hz) or 3.20 

±

0.02 Vdc (@ 121 Vac 60 Hz) at

TP1. AN IMPROPER TUNING OF R29 COULD
CAUSE THE CHARGER’S PASS TRANSISTORS TO
DISSIPATE EXCESSIVE HEAT, RESULTING IN
LOWERED RELIABILITY. THERE SHOULD BE NO
NEED TO ADJUST R29 IN THE FIELD.

CAUTION

LBI-38625

3

Summary of Contents for MASTR III 344A3168P1

Page 1: ...ED IN THE OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO REFER ALL SERVICING TO QUALIFIED SERVICE PERSONNEL CAUTION WARNING TO PREVENT FIRE OR ELECTRIC SHOCK HAZARD DO NOT EX POSE THIS PRODU...

Page 2: ...S VOLTAGE SOURCES 4 FLOAT VOLTAGE ADJUST 4 TROUBLESHOOTING PROCEDURE 5 PARTS LIST BATTERY HARDWARE KITS 5 BATTERY CHARGER 8 SCHEMATIC DIAGRAM 6 ASSEMBLY DIAGRAM 60 Hz CHARGER 7 MASTR III STATION 10 IN...

Page 3: ...rts to the emergency power state Current instead of being sourced from the A port to the battery system is now being delivered from the battery K1 de energizes and K2 remains energized This allows up...

Page 4: ...ed loop control group which provides the regulated output voltage to the battery Potentiometer R12 varies the amount of voltage feedback in the control loop thus allowing precise adjustment of the out...

Page 5: ...ater than 12 25 Vdc before K2 is re en ergized to await the next emergency power state ERROR FLAG SIGNALS In the event of abnormal system operation the charger provides two error flag signals as outpu...

Page 6: ...OT PRESENT CHECK THE FOLLOWING LINE VOLTAGE TOO LOW OPEN TRANSISTOR A1Q5 BAD I C A1U4 BAD I C A1U7 OPEN DIODE A1D9 SWITCHED GROUND NOT CONNECTED CHECK THE FOLLOWING LINE VOLTAGE TOO LOW BAD RELAY A1K3...

Page 7: ...SCHEMATIC DIAGRAM 60 Hz CHARGER 289PS5 Rev A LBI 38625 6...

Page 8: ...ASSEMBLY DIAGRAM 60 Hz CHARGER XP 289PS5 Rev 5 LBI 38625 7...

Page 9: ...sistor 3 09K 1 4 W 1 Metal Film R9 M29 16001456 Resistor 274 1 4 W 1 Metal Film R10 M29 16001525 Resistor 10K 1 4 W 1 Metal Film R11 M29 16001448 Resistor 38 3K 1 4 W 1 Metal Film R12 M29 16013500 Pot...

Page 10: ...INTERCONNECTION DIAGRAM MASTR III STATION WITH EMERGENCY POWER 19D903635 Sh 3 Rev 2 LBI 38625 9...

Page 11: ...ASSEMBLY DIAGRAM MASTR III STATION 19D902845 Sh 10 Rev 2 LBI 38625 10...

Page 12: ...ASSEMBLY DIAGRAM MASTR III STATION 19D902845 Sh 11 Rev 1 LBI 38625 11...

Page 13: ...ASSEMBLY DIAGRAM MASTR III STATION 19D902845 Sh 12 Rev 1 LBI 38625 12...

Page 14: ...BATTERY SHELF 344A4051 Sh 1 Rev 1 INSTALLATION INSTRUCTIONS LBI 38625 13...

Reviews: