background image

 

- 33 - 

 
 

APPLICATION DATA 

 
 
The necessary control can sometimes be attained via fan 
cycling if the tower is rated at the same capacity as the 
chiller and the machine will operate under heavy load and 
at design conditions. On multiple chiller jobs, a single 
tower is oversized relative to the chiller. On other jobs the 
tower/chiller might be oversized to the design load and 
the machine and tower frequently cycle under light load. 
Under these conditions, fan cycling might result in very 
rapid temperature swings, which creates a dynamic 
situation that occurs faster than the chiller control system 
can accommodate it. Thus, in this case, either variable 
speed fans or modulating valve control should be used to 
regain control of the condenser water. Either type of 
control provides precise modulating control of the 
condenser water rather than on-off step control. The 
control can be initiated either by a condenser water 
temperature sensor/controller or, even better, by direct 
control from the chiller's computer based upon the 
machine's head pressure. 

It is further recommended that the condenser water pump 
be cycled by the chiller. This is to eliminate potentially 
very cold water from going through the condenser while 
the chiller is shut down. At the same time it is probable 
that relatively warmer chilled water is in the evaporator 
(an inversion). Refrigerant tends to migrate if there is a 
difference in pressures within the components of the 
chiller. It will seek the lowest pressure area of the 
packaged chiller which, in this case, would be the 
condenser. Starting of a chiller where the refrigerant has 
migrated to the condenser is not desirable. The presence 
of highly subcooled liquid refrigerant in the condenser will 
cause low suction pressures and possibly liquid slugging 
of the compressor. If the condenser water pump is off 
until the machine starts, the water in the condenser is at 
the machine room ambient, which is usually much closer 
to the evaporator water temperature. It should be noted 
that a flow switch in the condenser water is not required. 

Our unit wiring diagrams show the condenser water pump 
interlocked with our chiller and controlled to come on only 
when a compressor is energized. We also have an 
optional analog output on the controller that can be used 
to control the tower directly from the head pressure of the 
machine. The digital outputs can be used for three-point 
floating (or tri-state) control and the analog can be used 
to drive a 0 - 10 vdc actuator. 
Thus, even though there has been a trend toward fan 
cycling control of cooling towers, it is not a device that is 
suitable to every installation. We recommend that the 

designer carefully evaluate the system to determine if a 
more precise method of control is indicated. If there is 
any doubt, the more precise control is required. We also 
recommend that the condenser water pump interlock in 
the chiller control panel be used to enable and disable the 
condenser water pumps. 

Dunham-Bush Water Cooled Chillers have as standard a 
control feature called EPCAS (Evaporator Pressure 
Control at Start) which will allow for an inverted start. This 
occurs when the chilled water loop in a building is at a 
higher temperature than the condenser/tower loop. This 
occurs in many buildings after a weekend shut down. The 
chilled water loop can be as high as 90°F and the 
condenser/tower loop as low as 60°F. With the EPCAS 
feature, the valve feeding the evaporator will be throttled 
to create a pressure differential to help load the 
compressor. 

 

Ice Storage 

With a positive displacement rotary screw compressor, 
the Dunham-Bush water chiller can easily cool low 
temperature glycol down to 22°F with entering condenser 
water of 85°F. The same chiller can also produce warmer 
(40° to 45°F) leaving glycol for those building systems 
designed for only peak shaving. This can be 
accomplished by an external signal to the unit controller. 
No matter what your ice storage needs, the Dunham-
Bush Water Cooled Screw Flooded Chiller can handle it 
better than any other chiller. The use of multiple 
compressors minimizes the amount of horsepower used 
at any condition high temperature glycol for direct cooling 
in coils or low temperature glycol for producing ice at off-
peak power rate times. 

 

Multiple Unit Control 

One of the most perplexing problems to system designers 
is control of multiple chillers on the same water loop. The 
first decision is whether to put the chillers in parallel or 
series on the chilled waterside. If lower pumping cost is 
paramount, then putting chillers in series is often 
preferable. If primary/secondary pumping is utilized with 
normal 10°F range, then putting chillers in parallel is 
normally used. In either case, the Dunham-Bush 
controller can control up to six chillers. This eliminates the 
need for external control interface which often becomes 
difficult. If more than five chillers need to be controlled, an 
Equipment Management Center can be supplied for 
controlling/ monitoring up to ten units. 
 
 
 

Summary of Contents for WCFX-E Series

Page 1: ...Products that perform By people who care WCFX E Series 60Hz Water Cooled Rotary Screw Water Chillers Cooling Capacity 70 to 1000 TR 246 to 3517 kW R134a...

Page 2: ...atures 4 Operating Benefits 9 Typical Sequence of Operation 10 Physical Specifications 11 Dimensional Data 13 Floor Loading Diagram 19 Water Pressure Drop 20 Sound Pressure Data 26 Electrical Data 26...

Page 3: ...inimum downtime during rework of faulty or damaged compressor Dunham Bush can arrange to provide a substitute reworked compressors while the faulty compressor is being reworked or repaired D Vapor inj...

Page 4: ...exclusive electronically initiated hydraulically actuated control arrangement Positive Displacement Direct Connected The compressor is directly connected to the motor without any complicated gear sys...

Page 5: ...space is decreased and the gas pressure consequently increased Discharge Phase At a point determined by the designed built in compression ratio the discharge port is covered and the compressed gas is...

Page 6: ...hiller water temperature derivative D Evaporator Pressure D Condenser Pressure D Compressor amp draw of each compressor D Compressor elapsed run time of each compressor D Compressor starts status D Oi...

Page 7: ...em however is very similar to centrifugal water chillers and is shown in the refrigerant cycle diagram below Liquid refrigerant enters the flooded evaporator uniformly where it absorbs heat from water...

Page 8: ...g may be exposed to temperatures below freezing glycol protection is recommended if the water is not drained The recommended protection is 15 F below the minimum ambient temperature in the equipment r...

Page 9: ...D ASHRAE Standard 15 Safety Code for Mechanical Refrigeration D National Electric Code D IEEE D Optional PED Refrigerant Compatibility D Designed to operate with environmentally safe and economically...

Page 10: ...emperature is below the deadband the compressor is commanded to unload Thus the compressor capacity is continuously modulated to match applied load and hold leaving chilled water temperature at setpoi...

Page 11: ...kW 776 6 692 8 874 3 750 9 1028 4 951 3 1162 0 1168 3 1320 6 10 4 kcal h 66 8 59 6 75 2 64 6 88 4 81 8 99 9 100 5 113 6 Min Unit Capacity 25 12 5 25 12 5 25 12 5 12 5 25 12 5 Power 460 3P 60Hz Compres...

Page 12: ...2650 8 3080 2 3223 7 3354 2 3510 7 10 4 kcal h 204 8 201 2 210 9 219 6 228 0 264 9 277 2 288 5 301 9 Min Unit Capacity 8 5 12 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 Power 460 3P 60Hz Compressor Model Qty 1227...

Page 13: ...630 16 7 16 417 14 7 16 366 124 1 4 3157 4 102 45 3 16 1148 5 127 6 152 WCFX E 15S 2 1 16 53 16 7 8 429 101 7 8 2588 6 153 1 9 16 39 12 3 8 315 5 5 8 143 83 1 4 2115 28 1 8 715 18 3 16 462 15 3 8 391...

Page 14: ...530 164 3 16 4171 11 16 17 3 1 2 89 6 7 8 175 15 7 8 403 22 5 16 567 30 3 4 782 5 5 8 143 70 1778 6 152 8 203 WCFX E 30S 20 508 40 11 16 1033 40 11 16 1033 40 11 16 1033 25 635 58 1 2 1486 53 1 2 135...

Page 15: ...3 16 3866 29 1 4 743 5 5 8 143 5 5 8 143 5 5 8 143 5 5 8 143 19 3 16 487 20 3 16 513 15 1 4 387 15 1 4 387 15 1 4 387 5 5 8 143 6 7 8 175 6 7 8 175 12 5 8 321 12 5 8 321 12 7 8 327 18 1 4 464 78 7 8 2...

Page 16: ...64 1 2 1638 64 1 2 1638 86 11 16 2202 7 8 22 1 7 8 48 18 15 16 480 196 3 4 4997 1 1 2 38 3 7 8 99 8 5 8 219 20 508 28 5 16 719 39 11 16 1008 7 3 8 187 80 2032 10 254 10 254 WCFX E 60T 15 381 55 1397...

Page 17: ...2057 86 2184 7 8 22 1 7 8 48 20 5 8 524 213 3 4 5429 1 1 2 38 4 1 4 108 10 3 16 259 25 1 2 648 27 5 16 694 41 1 2 1055 8 1 8 207 88 2235 12 305 12 305 WCFX E 84 15 381 60 11 16 1541 60 11 16 1541 60...

Page 18: ...1 11 16 1312 10 3 4 273 99 2515 14 356 14 356 WCFX E 118 20 508 52 7 16 1331 52 7 16 1331 52 7 16 1331 27 686 72 5 8 1845 72 5 8 1845 129 9 16 3291 7 8 22 1 7 8 48 17 7 8 454 199 5055 1 1 2 38 3 1 2 8...

Page 19: ...50T 2521 1144 3385 1536 2403 1090 3181 1443 2285 1036 2976 1350 2166 983 2771 1257 21688 9837 54T 2696 1223 3713 1684 2579 1170 3489 1583 2461 1116 3265 1481 2343 1063 3041 1380 23588 10699 57T 2811...

Page 20: ...6T 1 10 100 1000 10000 Pressure Drop ft wg Water Flow Rate USgpm 1 10 100 100 1000 10000 Pressure Drop ft wg Water Flow Rate USgpm 46T 50T 73T 75T 81T 54T 57T 60T 20T 22T 24T 27T 30T 38T 40T 20T 22T 2...

Page 21: ...ate USgpm WATER PRESSURE DROP IMPERIAL UNITS 1C EVAPORATOR 3 PASS a Single Compressor b Twin Compressors c Three Compressors 2A CONDENSER 1 PASS a Single Compressor b Twin Compressors c Three Compress...

Page 22: ...Rate USgpm WATER PRESSURE DROP IMPERIAL UNITS 2B CONDENSER 2 PASS a Single Compressor b Twin Compressors c Three Compressors 2C CONDENSER 3 PASS a Single Compressor b Twin Compressors c Three Compress...

Page 23: ...10 100 1000 100 1000 10000 Pressure Drop kPa Water Flow Rate m hr 57T 60T 73T 75T 81T 10 100 100 1000 10000 Pressure Drop kPa Water Flow Rate m hr 20T 22T 24T 40T 38T 27T 30T 54T 50T 46T 40T 20T 22T 2...

Page 24: ...WATER PRESSURE DROP SI UNITS 1C EVAPORATOR 3 PASS a Single Compressor b Twin Compressors c Three Compressors 2A CONDENSER 1 PASS a Single Compressor b Twin Compressors c Three Compressors Note Above...

Page 25: ...ER PRESSURE DROP SI UNITS 2B CONDENSER 2 PASS a Single Compressor b Twin Compressors c Three Compressors 2C CONDENSER 3 PASS a Single Compressor b Twin Compressors c Three Compressors Note Above water...

Page 26: ...0 408 3 612 4 20S 460VAC 10 400 200 1222 1 154 499 749 20T 460VAC 10 300 200 1210 2 78 0 2 283 0 2 424 5 2 22T 460VAC 10 400 200 1210 1 1212 1 78 0 104 0 283 0 392 0 424 5 588 0 23S 460VAC 10 400 200...

Page 27: ...27 TYPICAL WIRING SCHEMATIC Two Compressors Unit...

Page 28: ...28 TYPICAL WIRING SCHEMATIC...

Page 29: ...29 TYPICAL WIRING SCHEMATIC...

Page 30: ...30 TYPICAL WIRING SCHEMATIC...

Page 31: ...31 TYPICAL WIRING SCHEMATIC...

Page 32: ...only the capacity required for the variable heating load This would enable the remainder of the base cooling load to be handled by a separate chiller utilizing evaporator entering condensing water tem...

Page 33: ...e point floating or tri state control and the analog can be used to drive a 0 10 vdc actuator Thus even though there has been a trend toward fan cycling control of cooling towers it is not a device th...

Page 34: ...ages can be controlled via an Equipment Management Center D Unit mounted disconnect switch 400 to 575 volts applications D Flanged semi hermetic compressor D Discharge service valve for MSC 226 series...

Page 35: ...ompressor loading based on leaving chilled water temperature It shall provide for high and low refrigerant pressure protection low oil level protection evaporator water freeze protection sensor error...

Page 36: ......

Reviews: