background image

8

9

COMMISSIONING
CARE/CLEANING

consumption. To correctly set the overflow valve, the

following procedure is recommended:

a) Open all heating circuits and close the overflow

valve. Determine the resulting temperature

difference between supply and return flow.

b) Close all of the heating circuits that may also be

closed during operation (depending on the type

of heat pump usage) so that the most unfa-

vourable operating state - with respect to the water

flow rate - is achieved.

c) In this operating state open the overflow valve

until approximately the same temperature

difference exists that was measured under a)

when the overflow valve was closed and the

heating circuits open.

Any malfunctions occurring during operation are

displayed on the heat pump controller and can be

corrected as described in the operating manual of

the heat pump controller.

CARE/CLEANING

9.1 Care

The heat pump is maintenance-free. To prevent

malfunctions due to sediments in the heat ex-

changers, care must be taken that no impurities can

enter the heat source system and heating  installa-

tion. In the event that operating malfunctions due to

contamination occur nevertheless, the system

should be cleaned as described below.

9.2 Cleaning of Heating Side

The ingress of oxygen into the heating water circuit

may result in the formation of oxidation products

(rust). It is therefore important - in particular with

respect to the piping of underfloor heating systems

- that the installation is executed in a diffusion-proof

manner.

Also residues of lubricating and sealing agents may

contaminate the heating water.

In the case of severe contamination leading to a

reduction of  the performance of the condenser in

the heat pump, the system must be cleaned by a

heating technician.

CAUTION!

CAUTION!

Based on information known to date we recommend

cleaning with a  5% phosphoric acid solution or, in

the case that cleaning needs to be performed more

frequently, with a 5% formic acid.

In either case, the cleaning fluid should be at room

temperature. It is recommended that the heat

exchanger is cleaned in the direction opposite to

the normal flow direction.

To prevent acidic cleaning agents from entering the

circuit of the heating installation we recommend that

the flushing device be fitted directly to the supply

and return lines of the condenser. To prevent any

damage caused by cleaning agent residues that

may  be present in the system it is important that the

system be thoroughly flushed using appropriate

neutralising agents.

The acids must be used with great care, all relevant

regulations of the employers' liability insurance

associations must be adhered to.

If in doubt, contact the manufacturer of the chemicals!

C a u t i o n   -   H e a t i n g  Te c h n i c i a n s   !

Depending on the filling water quality and quantity,

in particular in the case of mixed installations

and plastic pipes, mineral deposits (rust sludge,

lime) may form, impairing the proper functioning

of the heating installation. A reason for this is the

water hardness and oxygen dissolved in the filling

waters as well as additional oxygen from the air,

which may penetrate via valves, fittings and

plastic pipes (oxygen diffusion).  As a  preventive

measure it is recommended that a physical water

conditio-ner such as ELYSATOR be used

.

9.3 Cleaning of Heat Source Side

The supplied strainer is to be install-

ed in the  heat source inlet of the heat pump in

order to protect the evaporator against conta-

mination.

The filter screen of the strainer should be cleaned

one day after commissioning, thereafter every week.

If no more contamination can be noticed any more,

the strainer filter can be removed in order to reduce

pressure losses.

Summary of Contents for SI 11MSR

Page 1: ...1 MOUNTING and OPERATING MANUAL Brine to Water Heat Pump for Indoor Installation SI 9MSR SI11MSR SI 5MSR SI 7MSR CE Order No 452232 67 04 FD 8404 ...

Page 2: ... 6 INSTALLATION 6 6 1 General Information 6 2 Sound Emissions 7 MOUNTING 6 7 7 1 General 7 2 Connection on Heating Side 7 3 Connection on Heat Source Side 7 4 Electrical Connection 8 COMMISSIONING 7 8 1 General 8 2 Preparation 8 3 Procedure for Commissioning 9 CARE CLEANING 8 9 1 Care 9 2 Cleaning of Heating Side 9 3 Cleaning of Heat Source Side 10 MALFUNCTIONS TROUBLE SHOOTING 9 11 DECOMMISSIONIN...

Page 3: ...ions and Directives This heat pump conforms to all relevant DIN VDE regulations and EU directives For details refer to the EC Declaration of Conformity in the appendix The electrical connection of the heat pump must be performed according to and conforming with all re levant VDE EN and IEC standards Beyond that the connection requirements of the local utility compa nies have to be observed The hea...

Page 4: ...ating The heat generated by the sun wind and rain is stored in the ground This heat stored in the ground is collected by the brine circulating in the ground collector ground coil or similar device at low temperature A circulating pump then conveys the heated brine to the evaporator of the heat pump There the heat is given off to the refrigerant in the refrigeration cycle When so doing the brine co...

Page 5: ...nsported on an uneven surface or carried up or down stairs carrying straps may be used for this type of transport These straps may be passed directly underneath the wooden pallet The heat pump is not secured to the wooden pallet The heat pump must not be tilted more than max 45 in either direction For lifting the unit without pallet the holes provided in the sides of the frame should be used The s...

Page 6: ...ost Provided the controllers and circulating pumps are ready for operation the frost protection feature of the controller is active If the heat pump is taken out of service or in the event of a power failure the system has to be drained In heat pump installations where a power failure cannot be readily detected holiday house the heating circuit must contain a suitable antifreeze product INSTALLATI...

Page 7: ...and be checked for leaks The brine solution must contain at least 25 of an antifreeze and corrosion protection agent on a monoethylene glycol or propylene glycol basis 8 CAUTION MOUNTING COMMISSIONING CAUTION power consumption of the heat pump the technical connection requirements of the relevant electrical utility company as well as all applicable regulations Details on the power consumption of t...

Page 8: ...d by a heating technician CAUTION CAUTION Based on information known to date we recommend cleaning with a 5 phosphoric acid solution or in the case that cleaning needs to be performed more frequently with a 5 formic acid In either case the cleaning fluid should be at room temperature It is recommended that the heat exchanger is cleaned in the direction opposite to the normal flow direction To prev...

Page 9: ...t correct the malfunction yourself please contact the after sales service agent in charge see Warranty Certificate All electrical circuits must be dis connected from the power source prior to opening the equipment CAUTION DECOMMISSIONING 11 1 Shutdown in Summer Shutting down the heating system in summer is effected by switching the heat pump controller to the Summer operating mode 11 2 End of Life...

Page 10: ...9MSR 17 12 3 6 Cooling mode 9MSR 18 12 3 7 Heating mode 11MSR 19 12 3 8 Cooling mode 11MSR 20 12 4 Wiring Diagram 12 4 1 Control standard controller 21 12 4 2 Control cooling controller 22 12 4 3 Load 23 12 4 4 Terminal diagr standard controller 24 12 4 5 Terminal diagr cooling controller 25 12 4 6 Legend 26 12 5 Hydraulic Block Diagram 27 12 6 EC Declaration of Conformity 28 12 7 Warranty Certifi...

Page 11: ...ned Drawing 12 1 Maßbilder Heat source Heat pump inlet 1 1 4 external thread Heating water supply Heat pump outlet 1 1 4 external thread Heat source Heat pump outlet 1 1 4 external thread Heating water return Heat pump inlet 1 1 4 external thread ...

Page 12: ...7C 1 25 R407C 1 6 4 DIMENSIONS CONNECTIONS AND WEIGHT 4 1 Equipment dimensions without connections 4 H x W x L mm 800 600 450 800 600 450 800 600 450 800 600 450 4 2 Equipment connections for heating system inches 1 ext thread 1 ext thread 1 ext thread 1 ext thread 4 3 Equipment connections for heat source inches 1 ext thread 1 ext thread 1 ext thread 1 ext thread 4 4 Weight of transport unit s in...

Page 13: ... 15000 20000 25000 0 0 5 1 1 5 2 Heizwasserdurchfluß in m h Druckverlust in Pa Verflüssiger 0 10000 20000 30000 40000 50000 60000 70000 0 1 2 3 Soledurchfluß in m h Verdampfer Druckverlust in Pa 12 3 1 Heating Mode 5MSR APPENDIX 12 3 DIAGRAMS Heating capacity in kW Water outlet temperature in C Conditions Heating water flow rate 0 45 m3 h Brine flow rate 1 2 m3 h Brine inlet temperature in C Brine...

Page 14: ...00 0 0 5 1 1 5 2 Heizwasserdurchfluß in m h Druckverlust in Pa Verflüssiger 0 10000 20000 30000 40000 50000 60000 70000 0 0 5 1 1 5 2 2 5 3 Soledurchsatz m h Druckverlust in Pa Verdampfer 12 3 2 Cooling Mode 5MSR APPENDIX 12 3 DIAGRAMS Cooling capacity in kW Water outlet temperature in C Conditions Water flow rate 0 45 m3 h Brine flow rate 1 2 m3 h Brine inlet temperature in C Power consumption in...

Page 15: ...000 0 0 5 1 1 5 2 Heizwasserdurchfluß in m h Druckverlust in Pa Verflüssiger 0 10000 20000 30000 40000 50000 60000 70000 0 0 5 1 1 5 2 2 5 3 Soledurchfluß in m h Verdampfer Druckverlust in Pa 12 3 3 Heating Mode 7MSR APPENDIX 12 3 DIAGRAMS Heating capacity in kW Water outlet temperature in C Conditions Heating water flow rate 0 6 m3 h Brine flow rate 1 7 m3 h Brine inlet temperature in C Brine inl...

Page 16: ...0 0 0 5 1 1 5 2 Heizwasserdurchfluß in m h Druckverlust in Pa Verflüssiger 0 10000 20000 30000 40000 50000 60000 70000 0 0 5 1 1 5 2 2 5 3 Soledurchsatz m h Druckverlust in Pa Verdampfer 12 3 4 Cooling Mode 7MSR APPENDIX 12 3 DIAGRAMS Cooling capacity in kW Water outlet temperature in C Conditions Water flow rate 0 6 m3 h Brine flow rate 1 7 m3 h Brine inlet temperature in C Power consumption incl...

Page 17: ... 12000 14000 16000 18000 0 0 5 1 1 5 2 Heizwasserdurchfluß in m h Druckverlust in Pa Verflüssiger 0 10000 20000 30000 40000 50000 60000 70000 0 1 2 3 4 Soledurchfluß in m h Verdampfer Druckverlust in Pa APPENDIX 12 3 DIAGRAMS 12 3 5 Heating Mode 9MSR Heating capacity in kW Water outlet temperature in C Conditions Heating water flow rate 0 75 m3 h Brine flow rate 2 3 m3 h Brine inlet temperature in...

Page 18: ...00 14000 16000 18000 0 0 5 1 1 5 2 Heizwasserdurchfluß in m h Druckverlust in Pa Verflüssiger 0 10000 20000 30000 40000 50000 60000 70000 0 1 2 3 4 Soledurchsatz m h Druckverlust in Pa Verdampfer 12 3 6 Cooling Mode 9MSR APPENDIX 12 3 DIAGRAMS Cooling capacity in kW Water outlet temperature in C Conditions Water flow rate 0 75 m3 h Brine flow rate 2 3 m3 h Brine inlet temperature in C Power consum...

Page 19: ...8000 10000 12000 14000 16000 18000 0 0 5 1 1 5 2 Heizwasserdurchfluß in m h Druckverlust in Pa Verflüssiger 0 10000 20000 30000 40000 50000 0 1 2 3 4 Soledurchfluß in m h Verdampfer Druckverlust in Pa 12 3 7 Heating Mode 11MSR APPENDIX 12 3 DIAGRAMS Heating capacity in kW Water outlet temperature in C Conditions Heating water flow rate 1 0 m3 h Brine flow rate 3 0 m3 h Brine inlet temperature in C...

Page 20: ...2000 14000 16000 18000 0 0 5 1 1 5 2 Heizwasserdurchfluß in m h Druckverlust in Pa Verflüssiger 0 10000 20000 30000 40000 50000 0 1 2 3 4 Soledurchsatz m h Druckverlust in Pa Verdampfer 12 3 8 Cooling Mode 11MSR APPENDIX 12 3 DIAGRAMS Cooling capacity in kW Water outlet temperature in C Conditions Water flow rate 1 0 m3 h Brine flow rate 3 0 m3 h Brine inlet temperature in C Power consumption incl...

Page 21: ... A C B 6 J 1 4 C 8 N O 8 C 7 N O 7 C 7 J 6 B 7 J 7 I D 9 I D 1 0 I D 1 1 I D 1 2 G N D B 8 J 1 4 C 7 N C 8 C 9 J 1 6 C 9 N O 1 1 N O 1 0 N O 9 N O 1 J 1 8 X 5 G 0 J 8 0 V A C I D 1 4 H I D 1 4 I D C 1 3 I D 1 3 I D 1 3 H J 1 3 C 4 J 1 7 C 1 3 N O 1 3 N C 1 2 C 1 2 N O 1 2 J 1 2 N O 3 N C 1 3 F 3 L 2 1 J 1 1 p L A N 2 1 N 2 J 1 3 N O 4 2 1 N 2 J 1 2 C 1 R x T x R x T x G N D X 5 F 2 L 2 1 N 2 J 1 G...

Page 22: ... 7 N O 8 N C 8 I D C 1 0 V A C C 7 C 7 C 8 J 1 4 J 1 5 R x T x R x T x G N D 1 2 J 1 1 1 8 Y 1 1 8 F 3 J 1 3 N O 4 4 W e g e U m s c h a l t v e n t i l J 1 1 p L A N 1 2 X 5 1 5 X 2 G J 1 G 2 4 V A C J 1 G 0 0 V A C X 3 V D C X 3 G N D J 1 b i s J 1 1 u n d J 1 3 1 4 s o w i e X 2 X 3 X 4 u n d X 5 l i e g e n a n 2 4 V E s d a r f k e i n e N e t z s p a n n u n g a n g e l e g t w e r d e n A c...

Page 23: ...23 12 4 3 Load APPENDIX 12 4 WIRING DIAGRAM 4 3 2 1 4 3 C S R 3 2 1 L N P E M 1 M 1 M 1 1 M 1 N e t z 2 3 0 V 5 0 H z K 1 1 7 K 5 1 8 C 1 X 6 1 2 3 4 N 7 Mains power supply ...

Page 24: ...r M 1 3 E 1 0 X 1 1 2 p o l 1 2 p o l P E 3 N M 1 8 N e t z J 1 4 J 1 6 J 1 5 J 1 8 J 1 7 X 3 2 4 V A C B 7 J 6 A 3 A 4 0 V A C X 2 I D C 1 J 1 G 0 B 6 J 1 G P B 2 G N D B 8 I D 1 0 I D 1 1 I D 1 2 I D C 9 I D 9 J 7 I D 1 3 H I D C 1 3 I D 1 4 H I D 1 3 I D 1 4 J 8 N E 9 4 0 A T r 4 3 N O 7 C 7 P E N M A N O 8 N C 8 C 7 C 8 P E X 1 M Z N F 2 N O 9 N O 1 0 N O 1 1 C 9 C 9 X 1 P E X 1 N M i s c h e ...

Page 25: ...3 1 4 s o w i e X 2 X 3 X 4 u n d X 5 l i e g e n a n 2 4 V E s d a r f k e i n e N e t z s p a n n u n g a n g e l e g t w e r d e n A c h t u n g 2 6 5 4 3 1 N 5 m a x 5 S e n s o r e n ϕ ϕ 1 2 J 1 1 p L A N w e r k s s e i t i g v e r d r a h t e t b a u s e i t s b e i B e d a r f a n z u s c h l i e ß e n R 1 0 1 2 3 4 5 6 7 N 9 G e z e i c h n e t e K o n t a k t s t e l l u n g a n J 1 5 N ...

Page 26: ...ry relay M1 Compressor 1 M11 Primary pump M13 Heating circulating pump primary circuit M14 Heating circulating pump heating circuit 1 M15 Heating circulating pump heating circuit 2 M16 Auxiliary circulating pump M18 Hot water circulating pump M19 Swimming pool water circulating pump M21 Mixer main circuit M22 Mixer heating circuit 2 N1 Standard controller pCO2 N2 Cooling controller pCO1 N3 N4 Room...

Page 27: ...er E9 E10 M11 M13 M14 M15 M18 N1 N2 N3 N4 R1 R2 R3 R5 R9 EV KW MA MZ WW Temperaturfühler Flexibler Anschlußschlauch 1 3 4 2 7 5 6 8N1 N2 Schmutzfänger N1 N03 M11 N1 B5 R9 T N3 N4 TC TC TC Hydraulic Block Diagram APPENDIX 12 5 HYDRAULIC BLOCK DIAGRAM Shut off valve Safety valve Circulating pump Expansion vessel Thermostat manual valve Shut off valve with check valve Shut off valve with drain Heat c...

Page 28: ...s of the applicable EC directives This declaration becomes invalidated if any modifications are made to the product s without our prior authorization Designation of the product s EC Directives Brine to water heat pumps EC Low Voltage Directive for indoor installation with R407C 73 23 EEC EC EMC Directive 89 336 EEC Pressure Equipment Directive 97 23 EEC Type s Harmonized EN Standards Order No Nati...

Page 29: ...Notes ...

Page 30: ...Notes ...

Page 31: ...Notes ...

Page 32: ...32 KKW Kulmbacher Klimageräte Werk GmbH Subject to technical modifications Division Dimplex Fax 0 92 21 709 589 Am Goldenen Feld 18 www dimplex de D 95326 Kulmbach ...

Reviews: