background image

PRELIMINARY

CY7C1336H

Document #: 001-00210 Rev. *A

Page 4 of 15

Functional Overview

All synchronous inputs pass through input registers controlled
by the rising edge of the clock. Maximum access delay from
the clock rise (t

CDV

) is 6.5 ns (133-MHz device). 

The CY7C1336H supports secondary cache in systems
utilizing either a linear or interleaved burst sequence. The
interleaved burst order supports Pentium and i486™
processors. The linear burst sequence is suited for processors
that utilize a linear burst sequence. The burst order is
user-selectable, and is determined by sampling the MODE
input. Accesses can be initiated with either the Processor
Address Strobe (ADSP) or the Controller Address Strobe
(ADSC). Address advancement through the burst sequence is
controlled by the ADV input. A two-bit on-chip wraparound
burst counter captures the first address in a burst sequence
and automatically increments the address for the rest of the
burst access.

Byte Write operations are qualified with the Byte Write Enable
(BW

E

) and Byte Write Select (BW

[A:D]

) inputs. A Global Write

Enable (GW) overrides all Byte Write inputs and writes data to
all four bytes. All Writes are simplified with on-chip
synchronous self-timed write circuitry.

Three synchronous Chip Selects (CE

1

, CE

2

, CE

3

) and an

asynchronous Output Enable (OE) provide for easy bank
selection and output tri-state control. ADSP is ignored if CE

1

is HIGH.

Single Read Accesses

A single read access is initiated when the following conditions
are satisfied at clock rise: (1) CE

1

, CE

2

, and CE

3

 are all

asserted active, and (2) ADSP or ADSC is asserted LOW (if
the access is initiated by ADSC, the write inputs must be
deasserted during this first cycle). The address presented to
the address inputs is latched into the address register and the
burst counter/control logic and presented to the memory core.
If the OE input is asserted LOW, the requested data will be
available at the data outputs a maximum to t

CDV

 after clock

rise. ADSP is ignored if CE

1

 is HIGH.

Single Write Accesses Initiated by ADSP

This access is initiated when the following conditions are
satisfied at clock rise: (1) CE

1

, CE

2

, CE

3

 are all asserted

active, and (2) ADSP is asserted LOW. The addresses
presented are loaded into the address register and the burst
inputs (GW, BW

E

, and BW

[A:D]

) are ignored during this first

clock cycle. If the Write inputs are asserted active (see Write
Cycle Descriptions table for appropriate states that indicate a
Write) on the next clock rise, the appropriate data will be
latched and written into the device. Byte Writes are allowed.
During Byte Writes, BW

A

 controls DQ

A

 and BW

B

 controls

DQ

B

, BW

C

 controls DQ

C

, and BW

D

 controls DQ

D

. All I/Os are

tri-stated during a Byte Write. Since this is a common I/O
device, the asynchronous OE input signal must be deasserted
and the I/Os must be tri-stated prior to the presentation of data
to DQs. As a safety precaution, the data lines are tri-stated
once a Write cycle is detected, regardless of the state of OE.

Single Write Accesses Initiated by ADSC

This write access is initiated when the following conditions are
satisfied at clock rise: (1) CE

1

, CE

2

, and CE

3

 are all asserted

active, (2) ADSC is asserted LOW, (3) ADSP is deasserted
HIGH, and (4) the Write input signals (GW, BW

E

, and BW

[A:D]

)

indicate a write access. ADSC is ignored if ADSP is active
LOW.

The addresses presented are loaded into the address register
and the burst counter/control logic and delivered to the
memory core. The information presented to DQ

[D:A]

 will be

written into the specified address location. Byte Writes are
allowed. During Byte Writes, BW

A

 controls DQ

A

, BW

B

 controls

DQ

B

, BW

C

 controls DQ

C

, and BW

D

 controls DQ

D

. All I/Os are

tri-stated when a Write is detected, even a Byte Write. Since
this is a common I/O device, the asynchronous OE input signal
must be deasserted and the I/Os must be tri-stated prior to the
presentation of data to DQs. As a safety precaution, the data
lines are tri-stated once a Write cycle is detected, regardless
of the state of OE.

Burst Sequences

The CY7C1336H provides an on-chip two-bit wraparound
burst counter inside the SRAM. The burst counter is fed by
A

[1:0]

, and can follow either a linear or interleaved burst order.

The burst order is determined by the state of the MODE input.
A LOW on MODE will select a linear burst sequence. A HIGH
on MODE will select an interleaved burst order. Leaving
MODE unconnected will cause the device to default to a inter-
leaved burst sequence.

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ
places the SRAM in a power conservation “sleep” mode. Two
clock cycles are required to enter into or exit from this “sleep”
mode. While in this mode, data integrity is guaranteed.
Accesses pending when entering the “sleep” mode are not
considered valid nor is the completion of the operation
guaranteed. The device must be deselected prior to entering
the “sleep” mode. CEs, ADSP, and ADSC must remain
inactive for the duration of t

ZZREC

 after the ZZ input returns

LOW.

Interleaved Burst Address Table 
(MODE = Floating or V

DD

)

First 

Address

A1, A0

Second

Address

A1, A0

Third

Address

A1, A0

Fourth

Address

A1, A0

00

01

10

11

01

00

11

10

10

11

00

01

11

10

01

00

Linear Burst Address Table (MODE = GND)

First

Address

A

1

,

 

A

0

Second

Address

A

1

,

 

A

0

Third

Address

A

1

,

 

A

0

Fourth

Address

A

1

,

 

A

0

00

01

10

11

01

10

11

00

10

11

00

01

11

00

01

10

[+] Feedback 

Summary of Contents for CY7C1336H

Page 1: ...ADSP and ADV Write Enables BW A D and BWE and Global Write GW Asynchronous inputs include the Output Enable OE and the ZZ pin The CY7C1336H allows either interleaved or linear burst sequences selecte...

Page 2: ...DQA VSSQ VDDQ DQA DQA NC NC DQC DQC VDDQ VSSQ DQC DQC DQC DQC VSSQ VDDQ DQC DQC NC VDD NC VSS DQD DQD VDDQ VSSQ DQD DQD DQD DQD VSSQ VDDQ DQD DQD NC A A CE1 CE 2 BW D BW C BW B BW A CE 3 V DD V SS CL...

Page 3: ...merging from a deselected state ADV Input Synchronous Advance Input signal sampled on the rising edge of CLK When asserted it automatically incre ments the address in a burst cycle ADSP Input Synchron...

Page 4: ...ing Byte Writes BWA controls DQA and BWB controls DQB BWC controls DQC and BWD controls DQD All I Os are tri stated during a Byte Write Since this is a common I O device the asynchronous OE input sign...

Page 5: ...ontinue Burst Next H X X L X H L H L L H Q Read Cycle Continue Burst Next H X X L X H L H H L H Tri State Write Cycle Continue Burst Next X X X L H H L L X L H D Write Cycle Continue Burst Next H X X...

Page 6: ...L H L H H Write Bytes C A DQPC DQPA H L H L H L Write Bytes C B DQPC DQPB H L H L L H Write Bytes C B A DQPC DQPB DQPA H L H L L L Write Byte D DQPD H L L H H H Write Bytes D A DQPD DQPA H L L H H L W...

Page 7: ...0 3 0 8 V IX Input Leakage Current except ZZ and MODE GND VI VDDQ 5 5 A Input Current of MODE Input VSS 30 A Input VDD 5 A Input Current of ZZ Input VSS 5 A Input VDD 30 A IOZ Output Leakage Current G...

Page 8: ...ns 100 TQFP Package Unit JA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 30 32 C W JC Thermal Resis...

Page 9: ...after CLK Rise 0 5 0 5 ns tADH ADSP ADSC Hold after CLK Rise 0 5 0 5 ns tWEH GW BWE BW A D Hold after CLK Rise 0 5 0 5 ns tADVH ADV Hold after CLK Rise 0 5 0 5 ns tDH Data Input Hold after CLK Rise 0...

Page 10: ...IGH or CE2 is LOW or CE3 is HIGH tCYC tCL CLK tADH tADS ADDRESS t CH tAH tAS A1 tCEH tCES Data Out Q High Z tCLZ tDOH tCDV tOEHZ tCDV Single READ BURST READ tOEV tOELZ tCHZ Burst wraps around to its i...

Page 11: ...S ADDRESS t CH tAH tAS A1 tCEH tCES High Z BURST READ BURST WRITE D A2 D A2 1 D A2 1 D A1 D A3 D A3 1 D A3 2 D A2 3 A2 A3 Extended BURST WRITE D A2 2 Single WRITE tADH tADS tADH tADS t OEHZ tADVH tADV...

Page 12: ...ADV cycle is performed 19 GW is HIGH Timing Diagrams continued tCYC t CL CLK tADH tADS ADDRESS t CH tAH tAS A2 tCEH tCES Single WRITE D A3 A3 A4 BURST READ Back to Back READs High Z Q A2 Q A4 Q A4 1 Q...

Page 13: ...ed when entering ZZ mode See Cycle Descriptions table for all possible signal conditions to deselect the device 21 DQs are in High Z when exiting ZZ sleep mode Timing Diagrams continued t ZZ I SUPPLY...

Page 14: ...any names mentioned in this document may be the trademarks of their respective holders Ordering Information Speed MHz Ordering Code Package Diagram Package Type Operating Range 133 CY7C1336H 133AXC 51...

Page 15: ...t A 428408 See ECN NXR Changed address of Cypress Semiconductor Corporation on Page 1 from 3901 North First Street to 198 Champion Court Changed Three State to Tri State Modified Input Load to Input L...

Reviews: